High Regression Rate Hybrid Rocket Fuel Grains with Helical Port Structures

High Regression Rate Hybrid Rocket Fuel Grains with Helical Port Structures

[1]  Kenneth K. Kuo,et al.  Test of Hybrid Rocket Fuel Grains with Swirl Patterns Fabricated Using Rapid Prototyping Technology , 2013 .

[2]  Stephen A. Whitmore,et al.  Correlation of Hybrid Rocket Propellant Regression Measurements with Enthalpy-Balance Model Predictions , 2007 .

[3]  Takao Suzuki,et al.  A Study on the Regression Rate of Parrafin-Based Hybrid Rocket Fuels , 2009 .

[4]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[5]  Arif Karabeyoglu,et al.  Investigation of Feed System Coupled Low Frequency Combustion Instabilities in Hybrid Rockets , 2007 .

[6]  Tsong-Sheng Lee,et al.  The Performance of a Hybrid Rocket With Swirling GOx Injection , 2002 .

[7]  Kyung-Su Park,et al.  Low frequency instability in laboratory-scale hybrid rocket motors , 2015 .

[8]  Martin J. Chiaverini,et al.  Solid-Fuel Regression Rate Behavior of Vortex Hybrid Rocket Engines , 2002 .

[9]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[10]  P. Mishra,et al.  Momentum Transfer in Curved Pipes. 2. Non-Newtonian Fluids , 1979 .

[11]  Andrew Bath Performance characterization of complex fuel port geometries for hybrid rocket fuel grains , 2012 .

[12]  Transactions of the Institution of Chemical Engineers , 1924, Nature.

[13]  Greg Zilliac,et al.  Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels , 2004 .

[14]  Dario Giuseppe Pastrone,et al.  Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines , 2012 .

[15]  Takao Suzuki,et al.  A Study on the Regression Rate of Paraffin-based Hybrid Rocket Fuels , 2011 .

[16]  G. Marxman,et al.  Turbulent boundary layer combustion in the hybrid rocket , 1963 .

[17]  James M. Margolis,et al.  Engineering Plastics Handbook , 2005 .

[18]  C. E. Wooldridge,et al.  Fundamentals of Hybrid Boundary-Layer Combustion , 1964 .

[19]  Brian J. Cantwell,et al.  Similarity solution of fuel mass transfer, port mass flux coupling in hybrid propulsion , 2014 .

[20]  C. Geankoplis,et al.  Transport processes and separation process principles : (includes unit operations) , 2003 .

[21]  Arif M. Karabeyoglu,et al.  Evaluation of Fuel Additives for Hybrid Rockets and SFRJ Systems , 2014 .

[22]  Stephen A. Whitmore,et al.  Development of a Power-Efficient, Restart-Capable Arc Ignitor for Hybrid Rockets , 2015 .

[23]  Damrong Guoy,et al.  Simulations of slumping propellant and flexing inhibitors in solid rocket motors , 2002 .

[24]  Sean D. Walker,et al.  High Regression Rate Hybrid Rocket Fuel Grains with Helical Port Structures , 2015 .

[25]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[26]  V. Gnielinski,et al.  HEAT TRANSFER AND PRESSURE DROP IN HELICALLY COILED TUBES , 1986 .

[27]  T. Papanastasiou,et al.  Viscous Fluid Flow , 1999 .

[28]  Paul Lu,et al.  Advantages of Rapid Prototyping for Hybrid Rocket Motor Fuel Grain Fabrication , 2011 .

[29]  Stephen A. Whitmore,et al.  Comparing Hydroxyl Terminated Polybutadiene and Acrylonitrile Butadiene Styrene as Hybrid Rocket Fuels , 2013 .

[30]  M. Boiocchi,et al.  Ballistic and rheological characterization of paraffin-based fuels for hybrid rocket propulsion , 2011 .

[31]  Brian J. Cantwell,et al.  Combustion of Liquefying Hybrid Propellants: Part 1, General Theory , 2002 .

[32]  Rosa Yeh,et al.  Detection of degradation of ABS materials via DSC , 2006 .

[33]  Karin Ackermann,et al.  Unit Operations Of Chemical Engineering , 2016 .

[34]  H. Seifert,et al.  Rocket Propulsion Elements , 1963 .

[35]  Kozo Kawata,et al.  Dynamic mechanical behavior of HTPB dummy composite propellant , 1994 .