Functional Imaging and Optogenetics in Drosophila

Understanding how activity patterns in specific neural circuits coordinate an animal’s behavior remains a key area of neuroscience research. Genetic tools and a brain of tractable complexity make Drosophila a premier model organism for these studies. Here, we review the wealth of reagents available to map and manipulate neuronal activity with light.

[1]  Misha B. Ahrens,et al.  Labeling of active neural circuits in vivo with designed calcium integrators , 2015, Science.

[2]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[3]  Mala Murthy,et al.  Whole-cell in vivo patch-clamp recordings in the Drosophila brain. , 2013, Cold Spring Harbor protocols.

[4]  Nina Vogt,et al.  Voltage sensors: challenging, but with potential , 2015, Nature Methods.

[5]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[6]  Michael Z. Lin,et al.  Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators , 2017, eLife.

[7]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[8]  R. Freyberg,et al.  Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain , 2016, Nature Communications.

[9]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[10]  Rachel I. Wilson,et al.  Parallel Transformation of Tactile Signals in Central Circuits of Drosophila , 2016, Cell.

[11]  Hui-Hao Lin,et al.  Transcutical imaging with cellular and subcellular resolution. , 2017, Biomedical optics express.

[12]  P. Tomançak,et al.  Sample Preparation and Mounting of Drosophila Embryos for Multiview Light Sheet Microscopy. , 2016, Methods in molecular biology.

[13]  Masakatsu Watanabe,et al.  Fast manipulation of cellular cAMP level by light in vivo , 2007, Nature Methods.

[14]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[15]  I. Salecker,et al.  Neuronal Computations Made Visible with Subcellular Resolution , 2016, Cell.

[16]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[17]  Glenn C. Turner,et al.  Integration of the olfactory code across dendritic claws of single mushroom body neurons , 2013, Nature Neuroscience.

[18]  B. S. Baker,et al.  Central neural circuitry mediating courtship song perception in male Drosophila , 2015, eLife.

[19]  O. Shafer,et al.  Analysis of functional neuronal connectivity in the Drosophila brain. , 2012, Journal of neurophysiology.

[20]  Julien Vermot,et al.  Faculty Opinions recommendation of Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. , 2017 .

[21]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[22]  A. Fiala,et al.  Genetically Expressed Cameleon in Drosophila melanogaster Is Used to Visualize Olfactory Information in Projection Neurons , 2002, Current Biology.

[23]  Stefan R. Pulver,et al.  Imaging fictive locomotor patterns in larval Drosophila , 2015, Journal of neurophysiology.

[24]  S. Rao,et al.  Visualization of neuropeptide expression, transport, and exocytosis in Drosophila melanogaster. , 2001, Journal of neurobiology.

[25]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[26]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[27]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[28]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[29]  Aljoscha Nern,et al.  Neural signatures of dynamic stimulus selection in Drosophila , 2017, Nature Neuroscience.

[30]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[31]  Y. Rao,et al.  Mapping Neural Circuits with Activity-Dependent Nuclear Import of a Transcription Factor , 2012, Journal of neurogenetics.

[32]  Austin J. Rice,et al.  Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore. , 2017, Cell chemical biology.

[33]  Optogenetic Neuronal Silencing in Drosophila during Visual Processing , 2017, Scientific Reports.

[34]  Hiroshi Kohsaka,et al.  Optical Dissection of Neural Circuits Responsible for Drosophila Larval Locomotion with Halorhodopsin , 2011, PloS one.

[35]  Caroline Murawski,et al.  High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour , 2016, Scientific Reports.

[36]  P. Taghert,et al.  Widespread Receptivity to Neuropeptide PDF throughout the Neuronal Circadian Clock Network of Drosophila Revealed by Real-Time Cyclic AMP Imaging , 2008, Neuron.

[37]  Gerald M. Rubin,et al.  Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body , 2015, Current Biology.

[38]  George J. Augustine,et al.  A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons , 2000, Neuron.

[39]  A. Fiala,et al.  Optogenetics in Drosophila Neuroscience. , 2016, Methods in molecular biology.

[40]  Christian Griesinger,et al.  Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes , 2014, Nature Methods.

[41]  Tanja Kortemme,et al.  Engineering a light-activated caspase-3 for precise ablation of neurons in vivo , 2017, Proceedings of the National Academy of Sciences.

[42]  A. Chiang,et al.  Optogenetic Control of Selective Neural Activity in Multiple Freely Moving Drosophila Adults Freely Available Online through the Pnas Open Access Option. Optogenetic Manipulation of Neural Circuits Delivering Punishment Acknowledgments. We Thank Klemens F. Störtkuhl, Akinao Nose, Zuoren Wang, and th , 2022 .

[43]  O. Shafer,et al.  Imaging cAMP Dynamics in the Drosophila Brain with the Genetically Encoded Sensor Epac1-Camps , 2012 .

[44]  Kevin J Mann,et al.  Whole-Brain Calcium Imaging Reveals an Intrinsic Functional Network in Drosophila , 2017, Current Biology.

[45]  F. Diao,et al.  Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. , 2015, Cell reports.

[46]  A. Fiala,et al.  Optical calcium imaging using DNA-encoded fluorescence sensors in transgenic fruit flies, Drosophila melanogaster. , 2014, Methods in molecular biology.

[47]  Katherine I Nagel,et al.  Mechanisms Underlying Population Response Dynamics in Inhibitory Interneurons of the Drosophila Antennal Lobe , 2016, The Journal of Neuroscience.

[48]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[49]  Kevin L. Briggman,et al.  Optical Imaging of Neuronal Populations During Decision-Making , 2005, Science.

[50]  Robert E Campbell,et al.  A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices , 2016, The Journal of Neuroscience.

[51]  Philipp J. Keller,et al.  Whole-animal functional and developmental imaging with isotropic spatial resolution , 2015, Nature Methods.

[52]  E. Boyden Optogenetics and the future of neuroscience , 2015, Nature Neuroscience.

[53]  P. Greengard,et al.  Writing Memories with Light-Addressable Reinforcement Circuitry , 2009, Cell.

[54]  Theodore H. Lindsay,et al.  Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans , 2015, Cell.

[55]  Stefanie Hampel,et al.  Targeted Manipulation of Neuronal Activity in Behaving Adult Flies , 2017 .

[56]  J. Ewer,et al.  Use of targetable gfp-tagged neuropeptide for visualizing neuropeptide release following execution of a behavior. , 2004, Journal of neurobiology.

[57]  Shai Berlin,et al.  Photoactivatable Genetically-Encoded Calcium Indicators for targeted neuronal imaging , 2015, Nature Methods.

[58]  Leslie C Griffith,et al.  A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster , 2015, eLife.

[59]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[60]  Chi-Hon Lee,et al.  Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation , 2015, Nature Communications.

[61]  Alexander Borst,et al.  In Vivo Performance of Genetically Encoded Indicators of Neural Activity in Flies , 2005, The Journal of Neuroscience.

[62]  R. Axel,et al.  Identifying Functional Connections of the Inner Photoreceptors in Drosophila using Tango-Trace , 2014, Neuron.

[63]  Feng Zhang,et al.  Nociceptive Neurons Protect Drosophila Larvae from Parasitoid Wasps , 2007, Current Biology.

[64]  Michael Z. Lin,et al.  Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. , 2015, Current opinion in chemical biology.

[65]  J. V. Van Etten,et al.  Engineering of a light-gated potassium channel , 2015, Science.

[66]  A. Leonardo,et al.  A spike-timing mechanism for action selection , 2014, Nature Neuroscience.

[67]  Susana Q. Lima,et al.  PINP: A New Method of Tagging Neuronal Populations for Identification during In Vivo Electrophysiological Recording , 2009, PloS one.

[68]  Michael H. Dickinson,et al.  A Descending Neuron Correlated with the Rapid Steering Maneuvers of Flying Drosophila , 2017, Current Biology.

[69]  David J. Anderson,et al.  Optogenetic control of freely behaving adult Drosophila using a red-shifted channelrhodopsin , 2013, Nature Methods.

[70]  V. Pieribone,et al.  Genetically Targeted Optical Electrophysiology in Intact Neural Circuits , 2013, Cell.

[71]  R. Kerr,et al.  Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning , 2014, Science.

[72]  Kristin Scott,et al.  Excitation and inhibition onto central courtship neurons biases Drosophila mate choice , 2015, eLife.

[73]  Raphael Cohn,et al.  Coordinated and Compartmentalized Neuromodulation Shapes Sensory Processing in Drosophila , 2015, Cell.

[74]  Wei Zhang,et al.  A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2‐mediated photoactivation of targeted neurons , 2007, The European journal of neuroscience.

[75]  Gilles Laurent,et al.  Evaluating a Genetically Encoded Optical Sensor of Neural Activity Using Electrophysiology in Intact Adult Fruit Flies , 2007, Frontiers in neural circuits.

[76]  Christian Wegener,et al.  Potency of Transgenic Effectors for Neurogenetic Manipulation in Drosophila Larvae , 2014, Genetics.

[77]  David J. Anderson,et al.  P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila , 2015, eLife.

[78]  A. Gordus,et al.  Sensitive red protein calcium indicators for imaging neural activity , 2016, bioRxiv.

[79]  Dhruv Grover,et al.  Flyception: imaging brain activity in freely walking fruit flies , 2016, Nature Methods.

[80]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[81]  K. Basler,et al.  Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves , 2016, Nature Communications.

[82]  Kristin Scott,et al.  Representations of Taste Modality in the Drosophila Brain , 2015, Neuron.

[83]  Jean-René Martin In Vivo Brain Imaging: Fluorescence or Bioluminescence, Which to Choose? , 2008, Journal of neurogenetics.

[84]  Michael Z. Lin,et al.  Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo , 2016, Cell.

[85]  Alexander Borst,et al.  Heterogeneity in synaptic transmission along a Drosophila larval motor axon , 2005, Nature Neuroscience.

[86]  James W. Truman,et al.  Transvection Is Common Throughout the Drosophila Genome , 2012, Genetics.

[87]  Bruce R. Johnson,et al.  Light Activated Escape Circuits: A Behavior and Neurophysiology Lab Module using Drosophila Optogenetics. , 2015, Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience.

[88]  Jelena Platisa,et al.  Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight , 2017, ACS chemical neuroscience.

[89]  Ruqiang Liang,et al.  Monitoring activity in neural circuits with genetically encoded indicators , 2014, Front. Mol. Neurosci..

[90]  Takeharu Nagai,et al.  Genetically encoded bioluminescent voltage indicator for multi-purpose use in wide range of bioimaging , 2017, Scientific Reports.

[91]  M. Häusser,et al.  All-Optical Interrogation of Neural Circuits , 2015, The Journal of Neuroscience.

[92]  A. Wong,et al.  Doublesex Regulates the Connectivity of a Neural Circuit Controlling Drosophila Male Courtship Song. , 2016, Developmental cell.

[93]  Parvez Ahammad,et al.  Dynamical feature extraction at the sensory periphery guides chemotaxis , 2015, eLife.

[94]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[95]  Leslie C Griffith,et al.  Channelrhodopsin2 mediated stimulation of synaptic potentials at Drosophila neuromuscular junctions. , 2009, Journal of visualized experiments : JoVE.

[96]  Michael B. Reiser,et al.  Mapping the Neural Substrates of Behavior , 2017, Cell.

[97]  D. Tank,et al.  Two-photon excitation of channelrhodopsin-2 at saturation , 2009, Proceedings of the National Academy of Sciences.

[98]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[99]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[100]  Misha B. Ahrens,et al.  Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy , 2015, Neuron.

[101]  Richard Y. Hwang,et al.  Optogenetic manipulation of neural circuits and behavior in Drosophila larvae , 2012, Nature Protocols.

[102]  A. Wojtovich,et al.  Optogenetic control of ROS production , 2014, Redox biology.

[103]  G. Nagel,et al.  Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications , 2014, Proceedings of the National Academy of Sciences.

[104]  B. Dickson,et al.  FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila , 2014, Nature Methods.

[105]  Kristin Branson,et al.  Machine vision methods for analyzing social interactions , 2017, Journal of Experimental Biology.

[106]  G. Rubin,et al.  Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila , 2011, Nature Neuroscience.

[107]  K. Deisseroth,et al.  High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels , 2011, Proceedings of the National Academy of Sciences.

[108]  Rachel I. Wilson,et al.  A Mechanosensory Circuit that Mixes Opponent Channels to Produce Selectivity for Complex Stimulus Features , 2016, Neuron.

[109]  Yvette E. Fisher,et al.  FlpStop, a tool for conditional gene control in Drosophila , 2017, eLife.

[110]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[111]  B. J. Venton,et al.  Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation , 2015, Journal of neurochemistry.

[112]  David J. Anderson,et al.  Visualizing Neuromodulation In Vivo: TANGO-Mapping of Dopamine Signaling Reveals Appetite Control of Sugar Sensing , 2012, Cell.

[113]  Hugo J. Bellen,et al.  100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future , 2010, Nature Reviews Neuroscience.

[114]  N. Perrimon,et al.  Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca2+ signaling in the Drosophila midgut , 2017, eLife.

[115]  K. Deisseroth Optogenetics: 10 years of microbial opsins in neuroscience , 2015, Nature Neuroscience.

[116]  A. Cardona,et al.  A circuit mechanism for the propagation of waves of muscle contraction in Drosophila , 2016, eLife.

[117]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[118]  M. Gold,et al.  The genetically encoded tool set for investigating cAMP: more than the sum of its parts , 2015, Front. Pharmacol..

[119]  Patrick S. Stumpf,et al.  Light Modulation of Cellular cAMP by a Small Bacterial Photoactivated Adenylyl Cyclase, bPAC, of the Soil Bacterium Beggiatoa*♦ , 2010, The Journal of Biological Chemistry.

[120]  Farhan Mohammad,et al.  Optogenetic inhibition of behavior with anion channelrhodopsins , 2017, Nature Methods.

[121]  Scott Waddell,et al.  Light, heat, action: neural control of fruit fly behaviour , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[122]  Karen G. Hales,et al.  Genetics on the Fly: A Primer on the Drosophila Model System , 2015, Genetics.

[123]  Kristin Scott,et al.  Imaging Taste Responses in the Fly Brain Reveals a Functional Map of Taste Category and Behavior , 2006, Neuron.

[124]  Alexander Borst,et al.  A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. , 2006, Biophysical journal.

[125]  Cheng-Hsun Ho,et al.  Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins , 2017, Nature Communications.

[126]  G. Nagel,et al.  Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae , 2006, Current Biology.

[127]  Xiaojing J. Gao,et al.  A Transcriptional Reporter of Intracellular Ca2+ in Drosophila , 2015, Nature Neuroscience.

[128]  Botond Roska,et al.  Tuning FlaSh: redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. , 2002, Biophysical journal.

[129]  V. Jayaraman,et al.  Optogenetics in Drosophila melanogaster , 2015 .

[130]  Alexander Borst,et al.  Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[131]  Michael B. Reiser,et al.  The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila , 2017, Neuron.

[132]  Stefan R. Pulver,et al.  Selective Inhibition Mediates the Sequential Recruitment of Motor Pools , 2016, Neuron.

[133]  Julie H. Simpson,et al.  A neural command circuit for grooming movement control , 2015, eLife.

[134]  C. Potter,et al.  The Q-System: A Versatile Expression System for Drosophila. , 2016, Methods in molecular biology.

[135]  B. J. Venton,et al.  Optogenetic control of serotonin and dopamine release in Drosophila larvae. , 2014, ACS chemical neuroscience.

[136]  Michael Z. Lin,et al.  High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor , 2014, Nature Neuroscience.

[137]  Stefan R. Pulver,et al.  Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. , 2009, Journal of neurophysiology.

[138]  Vikas Bhandawat,et al.  Organization of descending neurons in Drosophila melanogaster , 2016, Scientific Reports.

[139]  Ann-Shyn Chiang,et al.  Non-invasive manipulation of Drosophila behavior by two-photon excited red-activatable channelrhodopsin. , 2015, Biomedical optics express.

[140]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[141]  Steven W. Flavell,et al.  Feedback from Network States Generates Variability in a Probabilistic Olfactory Circuit , 2015, Cell.

[142]  A. Mamiya,et al.  Antennal Mechanosensory Neurons Mediate Wing Motor Reflexes in Flying Drosophila , 2015, The Journal of Neuroscience.

[143]  E Rauch,et al.  Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools , 2014, Nature Communications.

[144]  M. Freeman,et al.  Neuron-Glia Interactions through the Heartless FGF Receptor Signaling Pathway Mediate Morphogenesis of Drosophila Astrocytes , 2014, Neuron.

[145]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[146]  Kristin Branson,et al.  Whole-central nervous system functional imaging in larval Drosophila , 2015, Nature Communications.

[147]  Ronald L. Davis,et al.  Detection of Calcium Transients in DrosophilaMushroom Body Neurons with Camgaroo Reporters , 2003, The Journal of Neuroscience.