Dense alumina-based carbonated fluorapatite nanobiocomposites for dental applications

[1]  M. Ibrahim,et al.  Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass , 2018, Ceramics International.

[2]  M. Ibrahim,et al.  In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis , 2018, Ceramics International.

[3]  M. Zawrah,et al.  In-situ formation of Al2O3/Al core-shell from waste material: Production of porous composite improved by graphene , 2018 .

[4]  M. Taha,et al.  Mechanical properties, in vitro and in vivo bioactivity assessment of Na 2 O-CaO-P 2 O 5 -B 2 O 3 -SiO 2 glass-ceramics , 2018 .

[5]  E. Pallone,et al.  Formation of different calcium phosphate phases on the surface of porous Al2O3-ZrO2 nanocomposites , 2018 .

[6]  M. Ibrahim,et al.  FTIR Spectral Characterization, Mechanical Properties and Antimicrobial Properties of La-Doped Phosphate-Based Bioactive Glasses , 2018, Silicon.

[7]  M. Ibrahim,et al.  Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites , 2017 .

[8]  Vijayalakshmi. Synthesis and structural properties characterization of ha/alumina and ha/mgo nanocomposite for biomedical applications , 2017 .

[9]  D. Sachs,et al.  Study of the microstructure and mechanical properties of beta tricalcium phosphate-based composites with alumina addition produced by powder metallurgy , 2017 .

[10]  M. Ibrahim,et al.  Effect of zinc oxide on the electronic properties of carbonated hydroxyapatite , 2017 .

[11]  M. Ibrahim,et al.  Preparation, Fourier Transform Infrared Characterization and Mechanical Properties of Hydroxyapatite Nanopowders , 2017 .

[12]  M. Ibrahim,et al.  Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis , 2017 .

[13]  M. Zawrah,et al.  Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying , 2017 .

[14]  L. Bolzoni,et al.  Quantifying the properties of low-cost powder metallurgy titanium alloys , 2017 .

[15]  M. Zawrah,et al.  Effect of milling parameters on sinterability, mechanical and electrical properties of Cu-4 wt.% ZrO2 nanocomposite , 2016 .

[16]  T. Kuo,et al.  Effects of Laser Power Level on Microstructural Properties and Phase Composition of Laser-Clad Fluorapatite/Zirconia Composite Coatings on Ti6Al4V Substrates , 2016, Materials.

[17]  D. Madej PREPARATION OF Al₂O₃-CaAl₁₂O₁₉-ZrO₂ COMPOSITE CERAMIC MATERIAL BY THE HYDRATION AND SINTERING OF Ca₇ZrAl₆O₁₈-REACTIVE ALUMINA MIXTURE , 2016 .

[18]  M. Abdullah,et al.  Mineral phase , microstructure , and Infra-Red characteristics of calcia-stabilized zirconia nanocrystallines synthesized from local zircon and slaked lime , 2016 .

[19]  B. Bulut Biocompatibility of Hydroxyapatite-Alumina and Hydroxyapatite-Zirconia Composites including Commercial Inert Glass (CIG) as a Ternary Component , 2016 .

[20]  Y. Otsuka,et al.  Surface Modifications and Their Effects on Titanium Dental Implants , 2015, BioMed research international.

[21]  M. Marinović‐Cincović,et al.  Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method , 2015 .

[22]  Donatella Duraccio,et al.  Biomaterials for dental implants: current and future trends , 2015, Journal of Materials Science.

[23]  M. Mitrić,et al.  Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid , 2015 .

[24]  Rama Krishna Alla,et al.  Dental Ceramics: Part I – An Overview of Composition, Structure and Properties , 2015 .

[25]  F. Deng,et al.  Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. , 2014, Biomaterials.

[26]  B. Jokić,et al.  Synthesis of fluorine substituted hydroxyapatite nanopowders and application of the central composite design for determination of its antimicrobial effects , 2014 .

[27]  M. Zawrah,et al.  Mechanical alloying, sintering and characterization of Al2O3–20 wt%–Cu nanocomposite , 2014 .

[28]  Sahar Salehi,et al.  Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: a feed forward neural network modelling. , 2014, Journal of the mechanical behavior of biomedical materials.

[29]  A. Hannora Preparation and Characterization of Hydroxyapatite/Alumina Nanocomposites by High-Energy Vibratory Ball Milling , 2014 .

[30]  N. Nezafati,et al.  Bioinorganics in Bioactive Calcium Silicate Ceramics for Bone Tissue Repair: Bioactivity and Biological Properties , 2014 .

[31]  B. Nasiri-Tabrizi,et al.  Synthesis and characterization of fluorapatite–zirconia composite nanopowders , 2013 .

[32]  J. Bouaziz,et al.  Elaboration and Characterization of Alumina-Tricalcium Phosphate Composites , 2013 .

[33]  A. Zamanian,et al.  The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. , 2013, Materials science & engineering. C, Materials for biological applications.

[34]  Edgar Dutra Zanotto,et al.  The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO–P2O5 sol–gel glasses and glass–ceramics , 2013, Journal of Materials Science: Materials in Medicine.

[35]  Y. Yokogawa,et al.  Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications , 2012 .

[36]  A. Nemati,et al.  Surface modification for titanium implants by hydroxyapatite nanocomposite. , 2012, Caspian journal of internal medicine.

[37]  F. Moztarzadeh,et al.  Ion Release Behavior and Apatite-Forming Ability of Sol-Gel Derived 70S30C Bioactive Glass with Magnesium/Zinc Substitution , 2011 .

[38]  J. Bouaziz,et al.  Elaboration and characterization of alumina - fluorapatite composites , 2011 .

[39]  E. Biazar,et al.  Synthesis of fluorapatite–hydroxyapatite nanoparticles and toxicity investigations , 2011, International journal of nanomedicine.

[40]  E. G. Volkova,et al.  Effect of mechanical activation on the morphology and structure of hydroxyapatite , 2011 .

[41]  Chang‐an Wang,et al.  Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics , 2010 .

[42]  J. Bouaziz,et al.  Mechanical properties of tricalcium phosphate-fluorapatite-alumina composites , 2009 .

[43]  J. Bouaziz,et al.  Sintering of tricalcium phosphate–fluorapatite composites with zirconia , 2008 .

[44]  Eduardo Saiz,et al.  Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. , 2006, Biomaterials.

[45]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[46]  Takashi Nakamura,et al.  Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. , 2005, Biomaterials.

[47]  R. Heimann,et al.  Effect of CaO on thermal decomposition during sintering of composite hydroxyapatite-zirconia mixtures for monolithic bioceramic implants , 1997 .

[48]  I. Denry Recent Advances in Ceramics for Dentistry , 1996 .

[49]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[50]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[51]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of biomedical materials research.