Preemption Games Under Levy Uncertainty

We study a stochastic version of Fudenberg–Tirole's preemption game. Two firms contemplate entering a new market with stochastic demand. Firms differ in sunk costs of entry. If the demand process has no upward jumps, the low cost firm enters first, and the high cost firm follows. If leader's optimization problem has an interior solution, the leader enters at the optimal threshold of a monopolist; otherwise, the leader enters earlier than the monopolist. If the demand admits positive jumps, then the optimal entry threshold of the leader can be lower than the monopolist's threshold even if the solution is interior; simultaneous entry can happen either as an equilibrium or a coordination failure; the high cost firm can become the leader. We characterize subgame perfect equilibrium strategies in terms of stopping times and value functions. Analytical expressions for the value functions and thresholds that define stopping times are derived.

[1]  Heidrun C. Hoppe,et al.  Innovation timing games: a general framework with applications , 2005, J. Econ. Theory.

[2]  Helen Weeds,et al.  Strategic Delay in a Real Optimna Model of R&D Competition , 2002 .

[3]  Ernesto Mordecki,et al.  Optimal stopping and perpetual options for Lévy processes , 2002, Finance Stochastics.

[4]  B. Nalebuff,et al.  The Devolution of Declining Industries , 1990 .

[5]  Svetlana Boyarchenko,et al.  Irreversible Decisions under Uncertainty: Optimal Stopping Made Easy , 2010 .

[7]  Martin Pesendorfer,et al.  Asymptotic Least Squares Estimators for Dynamic Games , 2008 .

[8]  S. Asmussen,et al.  Russian and American put options under exponential phase-type Lévy models , 2004 .

[9]  Jan-Henrik Steg,et al.  Irreversible investment in oligopoly , 2012, Finance Stochastics.

[10]  Network Effects, Market Structure and Industry Performance , 2009 .

[11]  A P,et al.  Caller Number Five and related timing games , 2008 .

[12]  MINIMUM GUARANTEED PAYMENTS AND COSTLY CANCELLATION RIGHTS: A STOPPING GAME PERSPECTIVE , 2010 .

[13]  Frank Riedel,et al.  On Irreversible Investment , 2006 .

[14]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[15]  Bart M. Lambrecht,et al.  The Impact of Debt Financing on Entry and Exit in a Duopoly , 2001 .

[16]  Juan F. Escobar,et al.  A Theory of Regular Markov Perfect Equilibria in Dynamic Stochastic Games: Genericity, Stability, and Purification , 2008 .

[17]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[18]  Yao-Wen Hsu,et al.  Preemptive patenting under uncertainty and asymmetric information , 2007, Ann. Oper. Res..

[19]  Elzbieta Z. Ferenstein,et al.  Randomized stopping games and Markov market games , 2007, Math. Methods Oper. Res..

[20]  Elie Tamer,et al.  Advances in Economics and Econometrics: Identification in Models of Oligopoly Entry , 2006 .

[21]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[22]  W. Donoghue Monotone Matrix Functions and Analytic Continuation , 1974 .

[23]  Pauli Murto,et al.  Exit in duopoly under uncertainty , 2004 .

[24]  Erik Ekstrom,et al.  On the value of optimal stopping games , 2006 .

[25]  P. Protter Stochastic integration and differential equations , 1990 .

[26]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[27]  Victor Aguirregabiria,et al.  Sequential Estimation of Dynamic Discrete Games , 2007 .

[28]  Steven R. Grenadier Game choices : the intersection of real options and game theory , 2000 .

[29]  Mihai Sîrbu,et al.  A Two-Person Game for Pricing Convertible Bonds , 2006, SIAM J. Control. Optim..

[30]  Peter M. Kort,et al.  Investment in Oligopoly Under Uncertainty: Accordion Effect , 2006 .

[31]  Nicolas Vieille Stopping Games - Recent Results , 2005 .

[32]  Peter M. Kort,et al.  Symmetric equilibrium strategies in game theoretic real option models , 2012 .

[33]  Bart M. Lambrecht,et al.  Real options and preemption under incomplete information , 2003 .

[34]  Mihail Zervos,et al.  A Problem of Sequential Entry and Exit Decisions Combined with Discretionary Stopping , 2003, SIAM J. Control. Optim..

[35]  Jacco J.J. Thijssen,et al.  Preemption in a real option game with a first mover advantage and player-specific uncertainty , 2010, J. Econ. Theory.

[36]  Svetlana Boyarchenko,et al.  Practical Guide to Real Options in Discrete Time , 2004, cond-mat/0404106.

[37]  Aldo Rustichini,et al.  Better Late than Early: Vertical Differentiation in the Adoption of a New Technology , 1993 .

[38]  Rabah Amir,et al.  Network Effects, Market Structure and Industry Performance , 2009, J. Econ. Theory.

[39]  George Deligiannidis,et al.  Optimal Stopping for Processes with Independent Increments, and Applications , 2009, Journal of Applied Probability.

[40]  P. Kort,et al.  The effects of information on strategic investment and welfare , 2006 .

[41]  A. Kyprianou,et al.  On the Novikov-Shiryaev Optimal Stopping Problems in Continuous Time , 2005 .

[42]  Svetlana Boyarchenko,et al.  OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .

[43]  Florin Avram,et al.  Exit problems for spectrally negative Levy processes and applications to (Canadized) Russian options , 2004 .

[44]  Andreas E. Kyprianou,et al.  Some calculations for Israeli options , 2004, Finance Stochastics.

[45]  E. B. Dynkin,et al.  Game variant of a problem on optimal stopping , 1969 .

[46]  Rabah Amir,et al.  Continuous Stochastic Games of Capital Accumulation with Convex Transitions , 1996 .

[47]  Sergei Levendorskii,et al.  Prices and Sensitivities of Barrier and First-Touch Digital Options in Levy-Driven Models , 2008 .

[48]  K. Back,et al.  Open Loop Equilibria and Perfect Competition in Option Exercise Games , 2009 .

[49]  Steven R. Grenadier Option Exercise Games: An Application to the Equilibrium Investment Strategies of Firms , 2002 .

[50]  T. Liggett,et al.  Optimal Stopping for Partial Sums , 1972 .

[51]  A. Shiryaev,et al.  ON AN EFFECTIVE SOLUTION OF THE OPTIMAL STOPPING PROBLEM FOR RANDOM WALKS , 2004 .

[52]  Grzegorz Pawlina,et al.  Real Options in an Asymmetric Duopoly: Who Benefits from Your Competitive Disadvantage? , 2002 .

[53]  Yuri Kifer,et al.  Game options , 2000, Finance Stochastics.

[54]  Rida Laraki,et al.  Continuous-time games of timing , 2005, J. Econ. Theory.

[55]  Svetlana Boyarchenko,et al.  Optimal Stopping in Levy Models, for Non-Monotone Discontinuous Payoffs , 2010, SIAM J. Control. Optim..

[56]  Prajit K. Dutta,et al.  A theory of stopping time games with applications to product innovations and asset sales , 1993 .

[57]  M. Satterthwaite,et al.  Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity , 2007 .

[58]  Victor Aguirregabiria,et al.  Sequential Estimation of Dynamic Discrete Games , 2007 .

[59]  Alexander Novikov,et al.  On a solution of the optimal stopping problem for processes with independent increments , 2006 .

[60]  Svetlana Boyarchenko,et al.  American options: the EPV pricing model , 2004 .

[61]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[62]  Pauli Murto,et al.  Delay and information aggregation in stopping games with private information , 2013, J. Econ. Theory.

[63]  Recent Advances in Financial Engineering , 2009 .

[64]  Mihail Zervos,et al.  A Model for Reversible Investment Capacity Expansion , 2007, SIAM J. Control. Optim..

[65]  D. Fudenberg,et al.  A Theory of Exit in Duopoly , 1986 .

[66]  Juuso Välimäki,et al.  Learning and Information Aggregation in an Exit Game , 2011 .

[67]  D. Fudenberg,et al.  Preemption and Rent Equalization in the Adoption of New Technology , 1985 .

[68]  General Option Exercise Rules, with Applications to Embedded Options and Monopolistic Expansion , 2005 .

[69]  Luis H. R. Alvarez,et al.  A Class of Solvable Stopping Games , 2008 .

[70]  S. Levendorskii,et al.  Perpetual American options under Levy processes , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[71]  Nicolas Vieille,et al.  Continuous-Time Dynkin Games with Mixed Strategies , 2002, SIAM J. Control. Optim..

[72]  M. Cripps,et al.  Strategic Experimentation with Exponential Bandits , 2003 .

[73]  Mihail Zervos,et al.  The explicit solution to a sequential switching problem with non-smooth data , 2010 .

[74]  Budhi Arta Surya,et al.  An approach for solving perpetual optimal stopping problems driven by Lévy processes , 2007 .

[75]  Steven T. Berry,et al.  Identification in Models of Oligopoly Entry ∗ , 2006 .

[76]  Ken-iti Sato,et al.  STOCHASTIC INTEGRALS WITH RESPECT TO L´ EVY PROCESSES AND INFINITELY DIVISIBLE DISTRIBUTIONS , 2011 .