Atomic Radius and Charge Parameter Uncertainty in Biomolecular Solvation Energy Calculations.

Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is underdetermined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a new method for quantifying this uncertainty in implicit solvation calculations of small molecules using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many more types of atomic charges; therefore, construction of surrogate models for the charge parameter space requires compressed sensing combined with an iterative rotation method to enhance problem sparsity. We demonstrate the application of the method by presenting results for the uncertainties in small molecule solvation energies based on these approaches. The method presented in this paper is a promising approach for efficiently quantifying uncertainty in a wide range of force field parametrization problems, including those beyond continuum solvation calculations. The intent of this study is to provide a way for developers of implicit solvent model parameter sets to understand the sensitivity of their target properties (solvation energy) on underlying choices for solute radius and charge parameters.

[1]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[2]  Holger Rauhut,et al.  Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.

[3]  Richard A. Messerly,et al.  Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for n-alkanes. , 2017, The Journal of chemical physics.

[4]  J Andrew McCammon,et al.  Limitations of atom-centered dielectric functions in implicit solvent models. , 2005, The journal of physical chemistry. B.

[5]  Jana Fuhrmann,et al.  Reviews In Computational Chemistry , 2016 .

[6]  Thomas A. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[7]  J. Trylska,et al.  Continuum molecular electrostatics, salt effects, and counterion binding—A review of the Poisson–Boltzmann theory and its modifications , 2008, Biopolymers.

[8]  Huan-Xiang Zhou,et al.  Electrostatic contribution to the binding stability of protein–protein complexes , 2006, Proteins.

[9]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[10]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[11]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[12]  Bin Zheng,et al.  Constructing Surrogate Models of Complex Systems with Enhanced Sparsity: Quantifying the Influence of Conformational Uncertainty in Biomolecular Solvation , 2014, Multiscale Model. Simul..

[13]  Qingyi Yang,et al.  Atomic Charge Parameters for the Finite Difference Poisson-Boltzmann Method Using Electronegativity Neutralization. , 2006, Journal of chemical theory and computation.

[14]  Shan Zhao,et al.  Minimal molecular surfaces and their applications , 2008, J. Comput. Chem..

[15]  Jacopo Tomasi,et al.  Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix‐inversion procedures and the renormalization of the apparent charges , 1995, J. Comput. Chem..

[16]  Nathan A. Baker,et al.  Biomolecular electrostatics and solvation: a computational perspective , 2012, Quarterly Reviews of Biophysics.

[17]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[18]  Gerhard Klebe,et al.  Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein–ligand complexes , 2006, Proteins.

[19]  Michel Dupuis,et al.  Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities. , 2008, The journal of physical chemistry. A.

[20]  Charles L. Brooks,et al.  Surveying implicit solvent models for estimating small molecule absolute hydration free energies , 2011, J. Comput. Chem..

[21]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[22]  Araz Jakalian,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method , 2000 .

[23]  Xiu Yang,et al.  Adaptive ANOVA decomposition of stochastic incompressible and compressible flows , 2012, J. Comput. Phys..

[24]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[25]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[26]  Jay W Ponder,et al.  Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum. , 2007, Journal of chemical theory and computation.

[27]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .

[28]  Li-Tien Cheng,et al.  Application of the level-set method to the implicit solvation of nonpolar molecules. , 2007, The Journal of chemical physics.

[29]  David L Mobley,et al.  Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. , 2008, Journal of medicinal chemistry.

[30]  Emil Alexov,et al.  Progress in developing Poisson-Boltzmann equation solvers , 2013, Molecular Based Mathematical Biology.

[31]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[32]  Guanhua Hou,et al.  An implicit solvent model for SCC-DFTB with Charge-Dependent Radii. , 2010, Journal of chemical theory and computation.

[33]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[34]  J A McCammon,et al.  Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. , 2005, Physical review letters.

[35]  Andreas Klamt,et al.  Towards a first principles prediction of pK a: COSMO-RS and the cluster-continuum approach , 2010 .

[36]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[37]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..

[38]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[39]  Lin Li,et al.  Electrostatic component of binding energy: Interpreting predictions from poisson–boltzmann equation and modeling protocols , 2016, J. Comput. Chem..

[40]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[41]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[42]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[43]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[44]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[45]  Nathan A. Baker,et al.  Differential geometry based solvation model I: Eulerian formulation , 2010, J. Comput. Phys..

[46]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[47]  Nathan A. Baker,et al.  Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum. , 2007, The Journal of chemical physics.

[48]  Nathan A. Baker,et al.  Optimizing the Poisson Dielectric Boundary with Explicit Solvent Forces and Energies:  Lessons Learned with Atom-Centered Dielectric Functions. , 2007, Journal of chemical theory and computation.

[49]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[50]  Shan Zhao,et al.  Geometric and potential driving formation and evolution of biomolecular surfaces , 2009, Journal of mathematical biology.

[51]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Nathan A. Baker,et al.  Bayesian Model Averaging for Ensemble-Based Estimates of Solvation-Free Energies. , 2016, The journal of physical chemistry. B.

[53]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[54]  Chandrajit L. Bajaj,et al.  Statistical Framework for Uncertainty Quantification in Computational Molecular Modeling , 2016, BCB.

[55]  J A McCammon,et al.  Coupling nonpolar and polar solvation free energies in implicit solvent models. , 2006, The Journal of chemical physics.

[56]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[57]  Donald G. Truhlar,et al.  New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions , 1998 .

[58]  Direct minimization: Alternative to the traditional L2 norm to derive partial atomic charges , 2015 .

[59]  J Andrew McCammon,et al.  Optimized Radii for Poisson-Boltzmann Calculations with the AMBER Force Field. , 2005, Journal of chemical theory and computation.

[60]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[61]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[62]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[63]  Nathan A. Baker,et al.  Enhancing sparsity of Hermite polynomial expansions by iterative rotations , 2015, J. Comput. Phys..

[64]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[65]  A. Bondi van der Waals Volumes and Radii , 1964 .

[66]  B. Montgomery Pettitt,et al.  Numerical Considerations in the Computation of the Electrostatic Free Energy of Interaction within the Poisson-Boltzmann Theory , 1997 .