Numerical Study of a Multipurpose Power Generator Using the Finite Element Method
暂无分享,去创建一个
Analytical and experimental analyses of a variable electromotive-force generator (VEG) show the advantages of this modified generator in hybrid electric vehicle and wind turbine applications with enhancing the fuel efficiency and expanding the operational range, respectively. In this study, electromagnetic analysis of a modified two-pole DC generator with an adjustable overlap between the rotor and the stator is studied using 3-D finite element simulation in ANSYS. The generator stator is modeled with two opposite pole pieces whose arcs span between 15° to 90° in the counterclockwise direction and −15° to −90° in the clockwise direction. A semicircular cylinder whose arc spans between −90° and 90° is used to model the generator rotor. A tetrahedral mesh is used to provide a solution for changes in the electromotive force at different frequencies and overlap ratios. For a constant electromagnetic flux density and fixed number of coils, the changes in the electromotive force at different overlap ratios between the rotor and the stator are obtained in static conditions. There is a very good correlation between the results from simulation and those from analytical and experimental studies.Copyright © 2014 by ASME