Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses

Radiometrically calibrated spectroscopic techniques employing an integrating-sphere detection system have been used to determine the fluorescence quantum efficiencies for two commercially available Nd3+-doped phosphate laser glasses, LG-750 and LG-760. Quantum efficiencies and fluorescence lifetimes were measured for samples with various neodymium concentrations. It is shown that the effects of concentration quenching are accurately described when both resonant nonradiative excitation hopping (the Burshtein model) and annihilation by cross relaxation are accounted for by Forster–Dexter dipole–dipole energy-transfer theory. The Forster–Dexter critical range for nonradiative excitation hopping was found to be RDD = 11 A, while the critical range for cross relaxation was close to RDA = 4 A in these glasses. The quantum efficiency at low Nd3+ concentrations was (92 ± 5)%, implying a nonradiative relaxation rate of 210 ± 150 s−1 for isolated ions. Improved values for the radiative lifetimes and the stimulated emission cross sections for these glasses were also deduced from the measurements.

[1]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[2]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[3]  H. Moos,et al.  MULTIPHONON ORBIT-LATTICE RELAXATION OF EXCITED STATES OF RARE-EARTH IONS IN CRYSTALS. , 1968 .

[4]  D. Rockwell,et al.  Measurements of heating and energy storage in flashlamp-pumped Nd:YAG and Nd-doped phosphate laser glasses , 1986 .

[5]  C. Brecher,et al.  Variations in the transition probabilities and quantum efficiency of Nd3+ ions in ED‐2 laser glass , 1977 .

[6]  J. Geusic,et al.  Laser Transition Cross Section and Fluorescence Branching Ratio for Nd 3+ in Yttrium Aluminum Garnet , 1968 .

[7]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[8]  R. G. Smith,et al.  Stimulated-emission cross section and fluorescent quantum efficiency ofNd3+in yttrium aluminum garnet at room temperature , 1974 .

[9]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .

[10]  S. E. Stokowski,et al.  Nd-doped laser glass spectroscopic and physical properties , 1981 .

[11]  V. B. Neustruev,et al.  Einstein coefficients, stimulated emission cross sections, and absolute quantum efficiencies of luminescence from the metastable state 4F3/2 of Nd3+ in laser glasses and garnet crystals , 1976 .

[12]  L. Andrews,et al.  Tunable infrared solid-state laser materials based on Cr 3+ in low ligand fields , 1982 .

[13]  L. Deshazer,et al.  Evidence of Nd:YAG quantum efficiency dependence on nonequivalent crystal field effects , 1983 .

[14]  John A. Caird,et al.  Fluorescence quantum efficiency and optical heating efficiency in laser crystals and glasses by laser calorimetry , 1988 .

[15]  Alfred Ehmert,et al.  Ein einfaches Verfahren zur Messung kleinster Jodkonzentrationen, Jod- und Natriumthiosulfatmengen in Lösungen , 1949 .

[16]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[17]  G. Blasse,et al.  Evaluation of the energy migration in GdAl3B4O12 , 1988 .

[18]  M. Inokuti,et al.  Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence , 1965 .

[19]  A. Lempicki Concentration quenching in Nd3+ stoichiometric materials , 1977 .

[20]  D. Milam,et al.  Gain saturation in Nd:doped laser materials , 1980 .

[21]  T. E. Varitimos,et al.  Optical Spectra and Intensities of Nd3+ in YAlO3 , 1971 .

[22]  M. J. Weber,et al.  Multiphonon Relaxation of Rare-Earth Ions in Yttrium Orthoaluminate , 1973 .

[23]  V. Lupei,et al.  Energy transfer between Nd3+ ions in YAG , 1986 .

[24]  D. Milam,et al.  Gain saturation in phosphate laser glasses , 1982 .

[25]  H. Moos,et al.  Multiphonon orbit-lattice relaxation in LaBr sub 3, LaCl sub 3, and LaF sub 3. , 1967 .

[26]  H. G. Danielmeyer,et al.  Fluorescence quenching in Nd:YAG , 1973 .

[27]  A. Prokhorov,et al.  Concentrated neodymium laser glasses (review) , 1981 .

[28]  W. Lowdermilk,et al.  Nonradiative relaxation of rare-earth ions in silicate laser glass , 1975 .

[29]  G. E. Peterson,et al.  Study of Relaxation Processes in Nd Using Pulsed Excitation , 1964 .

[30]  R. Saroyan,et al.  Measurements and modeling of gain coefficients for neodymium laser glasses , 1977, IEEE Journal of Quantum Electronics.

[31]  J. B. Birks,et al.  Energy Transfer in Organic Phosphors , 1954 .

[32]  J. Birks The Fluorescence and Scintillation Decay Times of Crystalline Anthracene , 1962 .

[33]  R. Powell,et al.  RADIATIONLESS DECAY PROCESSES OF Nd3 + IONS IN SOLIDS. , 1980 .

[34]  William F. Krupke,et al.  Induced-emission cross sections in neodymium laser glasses , 1974 .

[35]  Marvin J. Weber,et al.  Luminescence Decay by Energy Migration and Transfer: Observation of Diffusion-Limited Relaxation , 1971 .

[36]  M. J. Weber,et al.  Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y 2 O 3 , 1968 .

[37]  J. Geusic,et al.  Optical Refrigeration in Nd-Doped Yttrium Aluminum Garnet , 1968 .

[38]  W. Yen,et al.  Mechanisms of energy transfer between Nd3+ ions in YAG , 1987 .