Algorithms for Classes of Graphs with Bounded Expansion

We overview algorithmic results for classes of sparse graphs emphasizing new developments in this area. We focus on recently introduced classes of graphs with bounded expansion and nowhere-dense graphs and relate algorithmic meta-theorems for these classes of graphs to their analogues for proper minor-closed classes of graphs, classes of graphs with bounded tree-width, locally bounded tree-width and locally excluding a minor.

[1]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[2]  J. Nesetril,et al.  Structural Properties of Sparse Graphs , 2008, Electron. Notes Discret. Math..

[3]  Gerth Stølting Brodal,et al.  Dynamic Representation of Sparse Graphs , 1999, WADS.

[4]  Martin Grohe,et al.  Deciding First-Order Properties of Locally Tree-Decomposalbe Graphs , 1999, ICALP.

[5]  D. Eppstein Foreword to special issue on SODA 2002 , 2007, TALG.

[6]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[7]  Robin Thomas,et al.  Deciding First-Order Properties for Sparse Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[8]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[9]  Lukasz Kowalik,et al.  Short path queries in planar graphs in constant time , 2003, STOC '03.

[10]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[11]  H. Gaifman On Local and Non-Local Properties , 1982 .

[12]  Lukasz Kowalik,et al.  Oracles for bounded-length shortest paths in planar graphs , 2006, TALG.

[13]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[14]  Jaroslav Nesetril,et al.  First order properties on nowhere dense structures , 2010, The Journal of Symbolic Logic.

[15]  Stefan Arnborg,et al.  Forbidden minors characterization of partial 3-trees , 1990, Discret. Math..

[16]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion III. Restricted graph homomorphism dualities , 2008, Eur. J. Comb..

[17]  David Eppstein Diameter and Treewidth in Minor-Closed Graph Families , 2000, Algorithmica.

[18]  Stephan Kreutzer,et al.  Locally Excluding a Minor , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[19]  David Peleg,et al.  Distance-Dependent Distributed Directories , 1993, Inf. Comput..

[20]  Z. Dvořák,et al.  Asymptotical Structure of Combinatorial Objects , 2007 .

[21]  Klaus Jansen,et al.  Ranking of Graphs , 1994, WG.

[22]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[23]  Bruce A. Reed,et al.  Excluding any graph as a minor allows a low tree-width 2-coloring , 2004, J. Comb. Theory, Ser. B.

[24]  Jaroslav Nesetril,et al.  Linear time low tree-width partitions and algorithmic consequences , 2006, STOC '06.

[25]  Lukasz Kowalik,et al.  Adjacency queries in dynamic sparse graphs , 2007, Inf. Process. Lett..

[26]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[27]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[28]  Detlef Seese,et al.  Linear time computable problems and first-order descriptions , 1996, Mathematical Structures in Computer Science.

[29]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion II. Algorithmic aspects , 2008, Eur. J. Comb..

[30]  Martin Grohe,et al.  Deciding first-order properties of locally tree-decomposable structures , 2000, JACM.

[31]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.