Dynamic Covariance Models for Multivariate Financial Time Series

The accurate prediction of time-changing covariances is an important problem in the modeling of multivariate financial data. However, some of the most popular models suffer from a) overfitting problems and multiple local optima, b) failure to capture shifts in market conditions and c) large computational costs. To address these problems we introduce a novel dynamic model for time-changing covariances. Over-fitting and local optima are avoided by following a Bayesian approach instead of computing point estimates. Changes in market conditions are captured by assuming a diffusion process in parameter values, and finally computationally efficient and scalable inference is performed using particle filters. Experiments with financial data show excellent performance of the proposed method with respect to current standard models.

[1]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[2]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[3]  A. Harvey,et al.  Unobserved component time series models with Arch disturbances , 1992 .

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[6]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[7]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[8]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[9]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[10]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[11]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[12]  Enrique Sentana,et al.  Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models With Student t Innovations , 2003 .

[13]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[14]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[15]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[16]  M. Glickman,et al.  Factor Multivariate Stochastic Volatility via Wishart Processes , 2006 .

[17]  Jean-Michel Marin,et al.  DATA PROCESSING : COMPARISON OF BAYESIAN REGULARIZED PARTICLE FILTERS by Roberto Casarin , 2007 .

[18]  C. Gouriéroux,et al.  The Wishart Autoregressive Process of Multivariate Stochastic Volatility , 2009 .

[19]  S. Chib,et al.  Multivariate stochastic volatility , 2009 .

[20]  Andrew Gordon Wilson,et al.  Copula Processes , 2010, NIPS.

[21]  Andrew Gordon Wilson,et al.  Generalised Wishart Processes , 2010, UAI.

[22]  Miguel Lázaro-Gredilla,et al.  Variational Heteroscedastic Gaussian Process Regression , 2011, ICML.

[23]  David B. Dunson,et al.  Bayesian nonparametric covariance regression , 2011, J. Mach. Learn. Res..