Dissipative Dynamics in Classical and Quantum Conservative Systems

In this paper, which is largely review, I will discuss dissipative behavior in mechanical systems which preserve energy. The paper will encompass both the classical and quantum domains. In the classical context I will consider almost Poisson systems; systems which which have a Poisson braket which fails the Jacobi identity. This class of systems includes nonholonomic mechanical systems: systems with nonintegrable constraints such as rolling constraints. Such systems may either preserve or fail to preserve a natural measure. I will discuss also pure Hamiltonian systems such as the Toda lattice which can exhibit dissipative behavior in certain contexts as well as infinite-dimensional systems exhibiting radiative damping. In the quantum context I will discuss systems of quantum oscillators coupled to a heat bath, which also exhibit natural dissipative behavior.

[1]  C. F. Gauss,et al.  Über Ein Neues Allgemeines Grundgesetz der Mechanik , 1829 .

[2]  J. Gibbs On the Fundamental Formulae of Dynamics , 1879 .

[3]  Horace Lamb,et al.  On a Peculiarity of the Wave‐System due to the Free Vibrations of a Nucleus in an Extended Medium , 1900 .

[4]  A. Messiah Quantum Mechanics , 1961 .

[5]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[6]  R. Brockett,et al.  State-space models for infinite-dimensional systems , 1974 .

[7]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[8]  Morikazu Toda,et al.  Studies of a non-linear lattice , 1975 .

[9]  J. Moser Finitely many mass points on the line under the influence of an exponential potential -- an integrable system , 1975 .

[10]  B. Kostant,et al.  The solution to a generalized Toda lattice and representation theory , 1979 .

[11]  J. Willems,et al.  Topological classification and structural stability of linear systems , 1980 .

[12]  Peter E. Crouch,et al.  Geometric structures in systems theory , 1981 .

[13]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[14]  W. Symes The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .

[15]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[16]  Peter Hilton,et al.  New Directions in Applied Mathematics , 1982 .

[17]  P. Deift,et al.  Ordinary differential equations and the symmetric eigenvalue problem , 1983 .

[18]  Carlos Tomei,et al.  The topology of isospectral manifolds of tridiagonal matrices , 1984 .

[19]  M. Chu The Generalized Toda Flow, the QR Algorithm and the Center Manifold Theory , 1984 .

[20]  An infinite-dimensional classical integrable system and the Heisenberg and Schrödinger representations , 1986 .

[21]  Michael Davis Some aspherical manifolds , 1987 .

[22]  H. Posch,et al.  Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics. , 1987, Physical review letters.

[23]  G. W. Ford,et al.  Independent oscillator model of a heat bath: Exact diagonalization of the Hamiltonian , 1988 .

[24]  Zurek,et al.  Reduction of a wave packet in quantum Brownian motion. , 1989, Physical review. D, Particles and fields.

[25]  R. Brockett,et al.  A new formulation of the generalized Toda lattice equations and their fixed point analysis via the momentum map , 1990 .

[26]  A. Perelomov The Toda Lattice , 1990 .

[27]  T. Ratiu,et al.  A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra , 1990 .

[28]  R. Brockett,et al.  Toda flows, inverse spectral transform and realization theory , 1991 .

[29]  R. Brockett Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems , 1991 .

[30]  R. Brockett,et al.  Completely integrable gradient flows , 1992 .

[31]  Anthony Bloch P.S.Krishnaprasad,et al.  Dissipation Induced Instabilities , 1993, chao-dyn/9304005.

[32]  G. Eyink,et al.  Steady-state electrical conduction in the periodic Lorentz gas , 1993, chao-dyn/9302003.

[33]  van der Arjan Schaft,et al.  On the Hamiltonian Formulation of Nonholonomic Mechanical Systems , 1994 .

[34]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[35]  Iso-spectral deformations of general matrix and their reductions on Lie algebras , 1995, solv-int/9506005.

[36]  A. Bloch,et al.  Nonholonomic Control Systems on Riemannian Manifolds , 1995 .

[37]  A. Komech On Stabilization of String-Nonlinear Oscillator Interaction , 1995 .

[38]  E. Cohen,et al.  Dynamical ensembles in stationary states , 1995, chao-dyn/9501015.

[39]  Toda hierarchy with indefinite metric , 1995, solv-int/9505004.

[40]  A. D. Lewis The geometry of the Gibbs-Appell equations and Gauss' principle of least constraint , 1996 .

[41]  P. Krishnaprasad,et al.  The Euler-Poincaré equations and double bracket dissipation , 1996 .

[42]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[43]  M. Gekhtman,et al.  Completeness of real Toda flows and totally positive matrices , 1997 .

[44]  Jerrold E. Marsden,et al.  The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems , 1997 .

[45]  Bernhard Maschke,et al.  Modelling and Control of Mechanical Systems , 1997 .

[46]  Arjan van der Schaft,et al.  Interconnected mechanical systems , 1997 .

[47]  A. Soffer,et al.  Nonautonomous Hamiltonians , 1998, chao-dyn/9807004.

[48]  NON-HOLONOMIC GEODESIC FLOWS ON LIE GROUPS AND THE INTEGRABLE SUSLOV PROBLEM ON SO(4) , 1998 .

[49]  A. Ruina Nonholonomic stability aspects of piecewise holonomic systems , 1998 .

[50]  A. Soffer,et al.  Time Dependent Resonance Theory , 1998 .

[51]  Larry Bates,et al.  Examples of singular nonholonomic reduction , 1998 .

[52]  Jerrold E. Marsden,et al.  The energy-momentum method for the stability of non-holonomic systems , 1998 .

[53]  Anthony M. Bloch,et al.  Hamiltonian and gradient structures in the Toda flows , 1998 .

[54]  A. Soffer,et al.  Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations , 1998, chao-dyn/9807003.

[55]  Asymptotic stability in energy preserving systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[56]  Richard M. Murray,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997, SIAM Rev..

[57]  Radiation induced instability in interconnected systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[58]  Warren White,et al.  Control of nonlinear underactuated systems , 1999 .

[59]  J. Hamberg General matching conditions in the theory of controlled Lagrangians , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[60]  Alan Weinstein,et al.  Geometric Models for Noncommutative Algebras , 1999 .

[61]  Anthony M. Bloch,et al.  Control of squeezed states , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[62]  A. Bloch Asymptotic Hamiltonian dynamics: the Toda lattice, the three-wave interaction and the non-holonomic Chaplygin sleigh , 2000 .

[63]  A. Bloch,et al.  Dynamics of the n-dimensional Suslov problem , 2000 .

[64]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..

[65]  Sergey V. Drakunov,et al.  Stabilization of Nonholonomic Systems Using Isospectral Flows , 2000, SIAM J. Control. Optim..

[66]  Erich Joos,et al.  Elements of Environmental Decoherence , 1999, quant-ph/9908008.

[67]  Michael I. Weinstein,et al.  Parametrically Excited Hamiltonian Partial Differential Equations , 2000, SIAM J. Math. Anal..

[68]  A. Bloch,et al.  Gyroscopic classical and quantum oscillators interacting with heat baths , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[69]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping , 2001, IEEE Trans. Autom. Control..

[70]  Romeo Ortega,et al.  Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment , 2002, IEEE Trans. Autom. Control..

[71]  R. Ortega,et al.  The matching conditions of controlled Lagrangians and IDA-passivity based control , 2002 .

[72]  Jerrold E. Marsden,et al.  Flat nonholonomic matching , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[73]  Naomi Ehrich Leonard,et al.  The equivalence of controlled lagrangian and controlled hamiltonian systems , 2002 .

[74]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[75]  A. Bloch,et al.  Invariant measures of nonholonomic flows with internal degrees of freedom , 2003 .

[76]  Anthony M. Bloch,et al.  Gyroscopically Stabilized Oscillators and Heat Baths , 2004 .

[77]  Anthony M. Bloch,et al.  Radiation Induced Instability , 2004, SIAM J. Appl. Math..