1 THERMODYNAMIC PROPERTIES AND PHASE RELATIONS IN MANTLE MINERALS INVESTIGATED BY FIRST PRINICIPLES QUASIHARMONIC THEORY

This research has been motivated by geophysics and materials physics. The objective has been to advance materials theory and computations for high pressure and high temperature applications to the point that it can make a difference in our understanding of the Earth. Understanding of the mineralogy, composition, and thermal structure of the Earth evolves by close interaction of three fields: seismology, geodynamics, and mineral physics. Earth’s structure is imaged by seismology, which obtains body wave velocities and density throughout the Earth’s interior (Fig. 1). Interpretation of this data relies on knowledge of aggregate properties of Earth forming materials either measured in laboratory or calculated, in many cases by both. However, the conditions of the Earth’s interior, especially at the core, may be challenging for important experiments, and materials computations have emerged to contribute decisively to this field. Earth’s evolution is simulated by geodynamics, but these simulations need as input information about rheological and thermodynamic properties of minerals, including phase transformation properties such as Clapeyron slopes. Our research has concentrated on the phases of the Earth’s mantle, particularly the deep mantle whose conditions are more challenging for experiments. The mantle accounts for ~83% of the Earth’s volume. In this article we will review the essential first-principles approach used to investigate solids at high temperatures and pressures, summarize their performance for mantle minerals (Fig. 2), and point to critical results that have stirred us in the current research path. The success is remarkable, but some limitations point the way to future developments in this field.

[1]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[2]  S. Akimoto,et al.  High-pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+Fe2+ partitioning among constituent minerals , 1979 .

[3]  P. Carrier,et al.  Quasiharmonic elastic constants corrected for deviatoric thermal stresses , 2008, 0808.3373.

[4]  L. Stixrude,et al.  Akimotoite to perovskite phase transition in MgSiO3 , 2004 .

[5]  L. Stixrude,et al.  Calculated elastic constants and anisotropy of Mg2SiO4 spinel at high pressure , 1997 .

[6]  B. Reynard,et al.  High-pressure X-ray diffraction study and equation of state of MgSiO3 ilmenite , 1996 .

[7]  S. Sinogeikin,et al.  Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity , 2003 .

[8]  Steven G. Louie,et al.  Nonlinear ionic pseudopotentials in spin-density-functional calculations , 1982 .

[9]  B. Karki,et al.  First‐principles lattice dynamics and thermoelasticity of MgSiO3 ilmenite at high pressure , 2002 .

[10]  R. Hazen,et al.  Effects of Fe/Mg on the compressibility of synthetic wadsleyite: β-(Mg1-xFex)2SiO4 (x≤0.25) , 1990 .

[11]  H. Mao,et al.  Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3‐perovskites to 30 GPa , 1991 .

[12]  H. Mao,et al.  Quasi‐hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure‐volume‐temperature equation of state , 2001 .

[13]  R. Kind,et al.  Seismic evidence for very deep roots of continents , 1996 .

[14]  O. Anderson,et al.  Thermoelastic parameters for six minerals at high temperature , 1991 .

[15]  F. Guyot,et al.  Thermodynamic properties of minerals at high pressures and temperatures from vibrational spectroscopic data , 1999 .

[16]  D. Rubie,et al.  Splitting of the 520-Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle , 2008, Science.

[17]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[18]  Peter M. Shearer,et al.  Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity , 1990, Nature.

[19]  M. Ross,et al.  Melting curve of aluminum in a diamond cell to 0.8 Mbar: implications for iron , 1997 .

[20]  Renata M. Wentzcovitch,et al.  Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets , 2006, Science.

[21]  F. Guyot,et al.  Quasi-harmonic computations of thermodynamic parameters of olivines at high-pressure and high-temperature. A comparison with experiment data , 1996 .

[22]  M. Gurnis,et al.  Evidence for a ubiquitous seismic discontinuity at the base of the mantle , 1999, Science.

[23]  J. Feldman,et al.  A one-parameter treatment of anharmonic specific heat , 1965 .

[24]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[25]  J. Tsuchiya,et al.  MgSiO3 postperovskite at D'' conditions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Katsura,et al.  The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel , 1989 .

[27]  O. Anderson,et al.  Measurement of elastic properties of single-crystal CaO up to 1200 K , 1992 .

[28]  R. Wentzcovitch,et al.  Invariant molecular-dynamics approach to structural phase transitions. , 1991, Physical review. B, Condensed matter.

[29]  F. Schilling,et al.  Single-crystal elastic properties of (Y,Yb)3Al5O12 , 2009 .

[30]  R. Jeanloz,et al.  Vibrational spectrum of MgSiO3 perovskite: Zero‐pressure Raman and mid‐infrared spectra to 27 GPa , 1987 .

[31]  H. Hagemann,et al.  Experimental Raman scattering investigation of phonon anharmonicity effects in , 1998 .

[32]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[33]  G. Peckham,et al.  Lattice dynamics of magnesium oxide , 1970 .

[34]  D. Weidner,et al.  Elasticity of majorite, MgSiO3 tetragonal garnet , 1997 .

[35]  C. H. Perry,et al.  Temperature Dependence of the Long-Wavelength Optical Phonons in Diamond , 1971 .

[36]  A. Hofmeister,et al.  Infrared spectroscopy of CaGeO3 perovskite to 24 GPa and thermodynamic implications , 1994 .

[37]  Lin‐gun Liu Post-oxide phases of forsterite and enstatite , 1975 .

[38]  Crystal chemistry of forsterite: A first-principles study , 1997 .

[39]  R. Wentzcovitch,et al.  Low-pressure clino- to high-pressure clinoenstatite phase transition: A phonon-related mechanism , 2009 .

[40]  D. Weidner,et al.  First principles investigation of the postspinel transition in Mg2SiO4 , 2007 .

[41]  G. D. Price,et al.  Comparison between the lattice dynamics and molecular dynamics methods: Calculation results for MgSiO3 perovskite , 1994 .

[42]  T. Duffy,et al.  The equation of state of forsterite to 17.2 GPa and effects of pressure media , 1996 .

[43]  N. Tomioka,et al.  In situ X-ray diffraction study of enstatite up to 12 GPa and 1473 K and equations of state , 1999 .

[44]  A. Zerr,et al.  Melting of CaSiO3 perovskite to 430 kbar and first in‐situ measurements of lower mantle eutectic temperatures , 1997 .

[45]  R. Wentzcovitch,et al.  CaSiO3 perovskite at lower mantle pressures , 2005 .

[46]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[47]  G. MacDonald Composition and petrology of the earth's mantle , 1977 .

[48]  Guillaume Fiquet,et al.  High‐temperature thermodynamic properties of forsterite , 1991 .

[49]  Flanagan,et al.  Seismic Velocity and Density Jumps Across the 410- and 660-Kilometer Discontinuities. , 1999, Science.

[50]  E. Ito,et al.  Postspinel transformations in the system Mg2SiO4‐Fe2SiO4 and some geophysical implications , 1989 .

[51]  Lidunka Vočadlo,et al.  Ab initio melting curve of the fcc phase of aluminum , 2002 .

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  C. Prewitt,et al.  Chain and Layer Silicates at High Temperatures and Pressures , 2000 .

[54]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[55]  R. Angel,et al.  Equation of state of stishovite to lower mantle pressures , 2003 .

[56]  Jun Tsuchiya,et al.  First-principles prediction of crystal structures at high temperatures using the quasiharmonic approximation , 2007 .

[57]  S. Sinogeikin,et al.  Sound velocities and elastic properties of g-Mg2SiO4 to 873 K by Brillouin spectroscopy , 2000 .

[58]  Y. Meng,et al.  Hydrostatic compression of γ-Mg2SiO4 to mantle pressures and 700 K: Thermal equation of state and related thermoelastic properties , 1994 .

[59]  R. Jeanloz,et al.  B1-B2 Transition in Calcium Oxide from Shock-Wave and Diamond-Cell Experiments , 1979, Science.

[60]  G. D. Price,et al.  Ab initio study of MgSiO3 C2/c enstatite , 1995 .

[61]  Grimsditch,et al.  Raman scattering in diamond up to 1900 K. , 1991, Physical review. B, Condensed matter.

[62]  R. Hazen,et al.  Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K , 1989 .

[63]  Stefano de Gironcoli,et al.  First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions , 1999, Science.

[64]  G. D. Price,et al.  Elasticity of Mg2SiO4 ringwoodite at mantle conditions , 2006 .

[65]  G. D. Price,et al.  Elasticity of CaSiO3 perovskite at high pressure and high temperature , 2006 .

[66]  H. Küppers Thermal expansion , 2019, Science and Mathematics for Engineering.

[67]  Hiroshi Watanabe,et al.  Thermochemical Properties of Synthetic High-Pressure Compounds Relevant to the Earth’s Mantle , 1982 .

[68]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[69]  K. Hirose Postperovskite phase transition and its geophysical implications , 2006 .

[70]  Uchida,et al.  The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction , 1998, Science.

[71]  T. Irifune An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle , 1987 .

[72]  R. Boehler,et al.  Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: Implications for Mg2SiO4 phase equilibrium , 1994 .

[73]  R. Wentzcovitch,et al.  Phase stability of CaSiO3 perovskite at high pressure , 2004 .

[74]  I. Suzuki,et al.  THERMAL EXPANSION OF MODIFIED SPINEL, β-Mg2SiO4 , 1980 .

[75]  Murli H. Manghnani,et al.  Pressure Measurement at High Temperature in X-Ray Diffraction Studies: Gold as a Primary Standard , 1982 .

[76]  R. Hazen,et al.  Comparative crystal chemistry of orthosilicate minerals , 2000 .

[77]  R. Wentzcovitch,et al.  Density functional study of vibrational and thermodynamic properties of ringwoodite , 2006 .

[78]  S. Ono,et al.  Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle , 2004 .

[79]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[80]  S. Ono,et al.  Post-spinel transition in Mg2SiO4 determined by high P–T in situ X-ray diffractometry , 2003 .

[81]  Price,et al.  Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. , 1993, Physical review letters.

[82]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[83]  L. Liu,et al.  First Occurrence of the Garnet-Ilmenite Transition in Silicates , 1977, Science.

[84]  G. D. Price,et al.  Ab initio molecular dynamics study of elasticity of akimotoite MgSiO3 at mantle conditions , 2009 .

[85]  L. Stixrude,et al.  Phase stability and shear softening in CaSiO3 perovskite at high pressure , 2007 .

[86]  G. D. Price,et al.  The effect of cation-ordering on the elastic properties of majorite: An ab initio study , 2007 .

[87]  D. Helmberger,et al.  Short-period constraints on the proposed transition zone discontinuity , 1992 .

[88]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[89]  J. Gerald,et al.  Spinel elasticity and seismic structure of the transition zone of the mantle , 1991, Nature.

[90]  Lin-gun Liu,et al.  Silicate perovskite from phase transformations of pyrope‐garnet at high pressure and temperature , 1974 .

[91]  A. Sano,et al.  In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: Implication for the 660-km discontinuity , 2004 .

[92]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[93]  D. Canil Stability of clinopyroxene at pressure-temperature conditions of the transition region , 1994 .

[94]  A. Zerr,et al.  Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesioüstite , 1994, Nature.

[95]  R. Wentzcovitch,et al.  Effective semiempirical ansatz for computing anharmonic free energies , 2009 .

[96]  Stefano de Gironcoli,et al.  Ab initio lattice dynamics of MgSiO3 perovskite at high pressure , 2000 .

[97]  Y. Fei Effects of temperature and composition on the bulk modulus of (Mg,Fe)O , 1999 .

[98]  P. Richet,et al.  Thermal expansion of forsterite up to the melting point , 1996 .

[99]  N. Bouarissa Phonons and related crystal properties in indium phosphide under pressure , 2011 .

[100]  B. Karki,et al.  Vibrational and quasiharmonic thermal properties of CaO under pressure , 2003 .

[101]  J. Woodhouse,et al.  Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle , 2001, Science.

[102]  A. Hofmeister,et al.  Thermodynamic properties of ferromagnesium silicate perovskites from vibrational spectroscopy , 1994 .

[103]  K. Suito PHASE RELATIONS OF PURE Mg2SiO4 UP TO 200 KILOBARS , 1977 .

[104]  S. C. Parker,et al.  The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs , 1987 .

[105]  M. Gillan,et al.  Structural stability of silica at high pressures and temperatures , 2005 .

[106]  W. Goddard,et al.  Phase diagram of MgO from density-functional theory and molecular-dynamics simulations , 1999 .

[107]  L. Stixrude Structure and sharpness of phase transitions and mantle discontinuities , 1997 .

[108]  A. Dziewoński,et al.  Global de-correlation of the topography of transition zone discontinuities , 1998 .

[109]  K. Hirose,et al.  Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications , 2008 .

[110]  Raymond L. Orr,et al.  High Temperature Heat Contents of Magnesium Orthosilicate and Ferrous Orthosilicate , 1953 .

[111]  Yusheng Zhao,et al.  P-V-T equation of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle , 1994 .

[112]  L. Stixrude,et al.  Elastic constants and anisotropy of forsterite at high pressure , 1997 .

[113]  G. Shen,et al.  High pressure melting of deep mantle and core materials , 1998 .

[114]  Theoretical determination of the structures of CaSiO3 perovskites. , 2006, Acta crystallographica. Section B, Structural science.

[115]  H. Kojitani,et al.  High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system , 2004 .

[116]  T. Gasparik Transformation of enstatite — diopside — jadeite pyroxenes to garnet , 1989 .

[117]  Stefano de Gironcoli,et al.  High-pressure lattice dynamics and thermoelasticity of MgO , 2000 .

[118]  Y. Ohishi,et al.  Post-Perovskite Phase Transition , 2004 .

[119]  P. B. Allen,et al.  Thermodynamics of anharmonic crystals with application to Nb , 1975 .

[120]  D. Weidner,et al.  Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle , 1994 .

[121]  T. Tsuchiya First‐principles prediction of the P‐V‐T equation of state of gold and the 660‐km discontinuity in Earth's mantle , 2003 .

[122]  John P. Brodholt,et al.  Letters to Nature 934 , 2022 .

[123]  T. Ahrens,et al.  Melting of (Mg,Fe)2SiO4 at the Core-Mantle Boundary of the Earth , 1997, Science.

[124]  Nicola Marzari,et al.  Phonon anharmonicities in graphite and graphene. , 2007, Physical review letters.

[125]  W. Holzapfel,et al.  Equations of State for Cu, Ag, and Au for Wide Ranges in Temperature and Pressure up to 500 GPa and Above , 2001 .

[126]  A. Oganov,et al.  Ab initio molecular dynamics study of CaSiO3 perovskite at P-T conditions of earth's lower mantle , 2006 .

[127]  S. Jacobsen,et al.  Crystal structure of monoclinic hydrous wadsleyite [β-(Mg,Fe)2SiO4] , 1997 .

[128]  High pressure effects on thermal properties of MgO , 1995, mtrl-th/9503007.

[129]  G. R. Gathers,et al.  The equation of state of platinum to 660 GPa (6. 6 Mbar) , 1989 .

[130]  R. Hazen,et al.  Comparative high-pressure crystal chemistry of wadsleyite, β-(Mg1–xFex)2SiO4, with x = 0 and 0.25 , 2000 .

[131]  R. Cohen,et al.  Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure , 1996, physics/9610023.

[132]  T. Gasparik Phase relations in the transition zone , 1990 .

[133]  S. Ono,et al.  Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle , 2004 .

[134]  L. Stixrude,et al.  Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .

[135]  J. M. Brown,et al.  Thermodynamic parameters in the Earth as determined from seismic profiles , 1981 .

[136]  R. Jeanloz,et al.  Tetragonal structure of CaSiO3 perovskite above 20 GPa , 2002 .

[137]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[138]  T. Duffy,et al.  The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity , 2001, Nature.

[139]  Foiles,et al.  Evaluation of harmonic methods for calculating the free energy of defects in solids. , 1994, Physical review. B, Condensed matter.

[140]  Lars Stixrude,et al.  Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale , 2000 .