1 THERMODYNAMIC PROPERTIES AND PHASE RELATIONS IN MANTLE MINERALS INVESTIGATED BY FIRST PRINICIPLES QUASIHARMONIC THEORY
暂无分享,去创建一个
[1] B. Alder,et al. THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .
[2] S. Akimoto,et al. High-pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+Fe2+ partitioning among constituent minerals , 1979 .
[3] P. Carrier,et al. Quasiharmonic elastic constants corrected for deviatoric thermal stresses , 2008, 0808.3373.
[4] L. Stixrude,et al. Akimotoite to perovskite phase transition in MgSiO3 , 2004 .
[5] L. Stixrude,et al. Calculated elastic constants and anisotropy of Mg2SiO4 spinel at high pressure , 1997 .
[6] B. Reynard,et al. High-pressure X-ray diffraction study and equation of state of MgSiO3 ilmenite , 1996 .
[7] S. Sinogeikin,et al. Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity , 2003 .
[8] Steven G. Louie,et al. Nonlinear ionic pseudopotentials in spin-density-functional calculations , 1982 .
[9] B. Karki,et al. First‐principles lattice dynamics and thermoelasticity of MgSiO3 ilmenite at high pressure , 2002 .
[10] R. Hazen,et al. Effects of Fe/Mg on the compressibility of synthetic wadsleyite: β-(Mg1-xFex)2SiO4 (x≤0.25) , 1990 .
[11] H. Mao,et al. Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3‐perovskites to 30 GPa , 1991 .
[12] H. Mao,et al. Quasi‐hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure‐volume‐temperature equation of state , 2001 .
[13] R. Kind,et al. Seismic evidence for very deep roots of continents , 1996 .
[14] O. Anderson,et al. Thermoelastic parameters for six minerals at high temperature , 1991 .
[15] F. Guyot,et al. Thermodynamic properties of minerals at high pressures and temperatures from vibrational spectroscopic data , 1999 .
[16] D. Rubie,et al. Splitting of the 520-Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle , 2008, Science.
[17] M. Born,et al. Dynamical Theory of Crystal Lattices , 1954 .
[18] Peter M. Shearer,et al. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity , 1990, Nature.
[19] M. Ross,et al. Melting curve of aluminum in a diamond cell to 0.8 Mbar: implications for iron , 1997 .
[20] Renata M. Wentzcovitch,et al. Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets , 2006, Science.
[21] F. Guyot,et al. Quasi-harmonic computations of thermodynamic parameters of olivines at high-pressure and high-temperature. A comparison with experiment data , 1996 .
[22] M. Gurnis,et al. Evidence for a ubiquitous seismic discontinuity at the base of the mantle , 1999, Science.
[23] J. Feldman,et al. A one-parameter treatment of anharmonic specific heat , 1965 .
[24] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[25] J. Tsuchiya,et al. MgSiO3 postperovskite at D'' conditions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[26] T. Katsura,et al. The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel , 1989 .
[27] O. Anderson,et al. Measurement of elastic properties of single-crystal CaO up to 1200 K , 1992 .
[28] R. Wentzcovitch,et al. Invariant molecular-dynamics approach to structural phase transitions. , 1991, Physical review. B, Condensed matter.
[29] F. Schilling,et al. Single-crystal elastic properties of (Y,Yb)3Al5O12 , 2009 .
[30] R. Jeanloz,et al. Vibrational spectrum of MgSiO3 perovskite: Zero‐pressure Raman and mid‐infrared spectra to 27 GPa , 1987 .
[31] H. Hagemann,et al. Experimental Raman scattering investigation of phonon anharmonicity effects in , 1998 .
[32] D. Vanderbilt,et al. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.
[33] G. Peckham,et al. Lattice dynamics of magnesium oxide , 1970 .
[34] D. Weidner,et al. Elasticity of majorite, MgSiO3 tetragonal garnet , 1997 .
[35] C. H. Perry,et al. Temperature Dependence of the Long-Wavelength Optical Phonons in Diamond , 1971 .
[36] A. Hofmeister,et al. Infrared spectroscopy of CaGeO3 perovskite to 24 GPa and thermodynamic implications , 1994 .
[37] Lin‐gun Liu. Post-oxide phases of forsterite and enstatite , 1975 .
[38] Crystal chemistry of forsterite: A first-principles study , 1997 .
[39] R. Wentzcovitch,et al. Low-pressure clino- to high-pressure clinoenstatite phase transition: A phonon-related mechanism , 2009 .
[40] D. Weidner,et al. First principles investigation of the postspinel transition in Mg2SiO4 , 2007 .
[41] G. D. Price,et al. Comparison between the lattice dynamics and molecular dynamics methods: Calculation results for MgSiO3 perovskite , 1994 .
[42] T. Duffy,et al. The equation of state of forsterite to 17.2 GPa and effects of pressure media , 1996 .
[43] N. Tomioka,et al. In situ X-ray diffraction study of enstatite up to 12 GPa and 1473 K and equations of state , 1999 .
[44] A. Zerr,et al. Melting of CaSiO3 perovskite to 430 kbar and first in‐situ measurements of lower mantle eutectic temperatures , 1997 .
[45] R. Wentzcovitch,et al. CaSiO3 perovskite at lower mantle pressures , 2005 .
[46] D. Hamann,et al. Norm-Conserving Pseudopotentials , 1979 .
[47] G. MacDonald. Composition and petrology of the earth's mantle , 1977 .
[48] Guillaume Fiquet,et al. High‐temperature thermodynamic properties of forsterite , 1991 .
[49] Flanagan,et al. Seismic Velocity and Density Jumps Across the 410- and 660-Kilometer Discontinuities. , 1999, Science.
[50] E. Ito,et al. Postspinel transformations in the system Mg2SiO4‐Fe2SiO4 and some geophysical implications , 1989 .
[51] Lidunka Vočadlo,et al. Ab initio melting curve of the fcc phase of aluminum , 2002 .
[52] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[53] C. Prewitt,et al. Chain and Layer Silicates at High Temperatures and Pressures , 2000 .
[54] Martins,et al. Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.
[55] R. Angel,et al. Equation of state of stishovite to lower mantle pressures , 2003 .
[56] Jun Tsuchiya,et al. First-principles prediction of crystal structures at high temperatures using the quasiharmonic approximation , 2007 .
[57] S. Sinogeikin,et al. Sound velocities and elastic properties of g-Mg2SiO4 to 873 K by Brillouin spectroscopy , 2000 .
[58] Y. Meng,et al. Hydrostatic compression of γ-Mg2SiO4 to mantle pressures and 700 K: Thermal equation of state and related thermoelastic properties , 1994 .
[59] R. Jeanloz,et al. B1-B2 Transition in Calcium Oxide from Shock-Wave and Diamond-Cell Experiments , 1979, Science.
[60] G. D. Price,et al. Ab initio study of MgSiO3 C2/c enstatite , 1995 .
[61] Grimsditch,et al. Raman scattering in diamond up to 1900 K. , 1991, Physical review. B, Condensed matter.
[62] R. Hazen,et al. Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K , 1989 .
[63] Stefano de Gironcoli,et al. First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions , 1999, Science.
[64] G. D. Price,et al. Elasticity of Mg2SiO4 ringwoodite at mantle conditions , 2006 .
[65] G. D. Price,et al. Elasticity of CaSiO3 perovskite at high pressure and high temperature , 2006 .
[66] H. Küppers. Thermal expansion , 2019, Science and Mathematics for Engineering.
[67] Hiroshi Watanabe,et al. Thermochemical Properties of Synthetic High-Pressure Compounds Relevant to the Earth’s Mantle , 1982 .
[68] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[69] K. Hirose. Postperovskite phase transition and its geophysical implications , 2006 .
[70] Uchida,et al. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction , 1998, Science.
[71] T. Irifune. An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle , 1987 .
[72] R. Boehler,et al. Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: Implications for Mg2SiO4 phase equilibrium , 1994 .
[73] R. Wentzcovitch,et al. Phase stability of CaSiO3 perovskite at high pressure , 2004 .
[74] I. Suzuki,et al. THERMAL EXPANSION OF MODIFIED SPINEL, β-Mg2SiO4 , 1980 .
[75] Murli H. Manghnani,et al. Pressure Measurement at High Temperature in X-Ray Diffraction Studies: Gold as a Primary Standard , 1982 .
[76] R. Hazen,et al. Comparative crystal chemistry of orthosilicate minerals , 2000 .
[77] R. Wentzcovitch,et al. Density functional study of vibrational and thermodynamic properties of ringwoodite , 2006 .
[78] S. Ono,et al. Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle , 2004 .
[79] Stefano de Gironcoli,et al. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.
[80] S. Ono,et al. Post-spinel transition in Mg2SiO4 determined by high P–T in situ X-ray diffractometry , 2003 .
[81] Price,et al. Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. , 1993, Physical review letters.
[82] A. Oganov,et al. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.
[83] L. Liu,et al. First Occurrence of the Garnet-Ilmenite Transition in Silicates , 1977, Science.
[84] G. D. Price,et al. Ab initio molecular dynamics study of elasticity of akimotoite MgSiO3 at mantle conditions , 2009 .
[85] L. Stixrude,et al. Phase stability and shear softening in CaSiO3 perovskite at high pressure , 2007 .
[86] G. D. Price,et al. The effect of cation-ordering on the elastic properties of majorite: An ab initio study , 2007 .
[87] D. Helmberger,et al. Short-period constraints on the proposed transition zone discontinuity , 1992 .
[88] E. R. Engdahl,et al. Constraints on seismic velocities in the Earth from traveltimes , 1995 .
[89] J. Gerald,et al. Spinel elasticity and seismic structure of the transition zone of the mantle , 1991, Nature.
[90] Lin-gun Liu,et al. Silicate perovskite from phase transformations of pyrope‐garnet at high pressure and temperature , 1974 .
[91] A. Sano,et al. In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: Implication for the 660-km discontinuity , 2004 .
[92] M. Parrinello,et al. Crystal structure and pair potentials: A molecular-dynamics study , 1980 .
[93] D. Canil. Stability of clinopyroxene at pressure-temperature conditions of the transition region , 1994 .
[94] A. Zerr,et al. Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesioüstite , 1994, Nature.
[95] R. Wentzcovitch,et al. Effective semiempirical ansatz for computing anharmonic free energies , 2009 .
[96] Stefano de Gironcoli,et al. Ab initio lattice dynamics of MgSiO3 perovskite at high pressure , 2000 .
[97] Y. Fei. Effects of temperature and composition on the bulk modulus of (Mg,Fe)O , 1999 .
[98] P. Richet,et al. Thermal expansion of forsterite up to the melting point , 1996 .
[99] N. Bouarissa. Phonons and related crystal properties in indium phosphide under pressure , 2011 .
[100] B. Karki,et al. Vibrational and quasiharmonic thermal properties of CaO under pressure , 2003 .
[101] J. Woodhouse,et al. Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle , 2001, Science.
[102] A. Hofmeister,et al. Thermodynamic properties of ferromagnesium silicate perovskites from vibrational spectroscopy , 1994 .
[103] K. Suito. PHASE RELATIONS OF PURE Mg2SiO4 UP TO 200 KILOBARS , 1977 .
[104] S. C. Parker,et al. The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs , 1987 .
[105] M. Gillan,et al. Structural stability of silica at high pressures and temperatures , 2005 .
[106] W. Goddard,et al. Phase diagram of MgO from density-functional theory and molecular-dynamics simulations , 1999 .
[107] L. Stixrude. Structure and sharpness of phase transitions and mantle discontinuities , 1997 .
[108] A. Dziewoński,et al. Global de-correlation of the topography of transition zone discontinuities , 1998 .
[109] K. Hirose,et al. Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications , 2008 .
[110] Raymond L. Orr,et al. High Temperature Heat Contents of Magnesium Orthosilicate and Ferrous Orthosilicate , 1953 .
[111] Yusheng Zhao,et al. P-V-T equation of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle , 1994 .
[112] L. Stixrude,et al. Elastic constants and anisotropy of forsterite at high pressure , 1997 .
[113] G. Shen,et al. High pressure melting of deep mantle and core materials , 1998 .
[114] Theoretical determination of the structures of CaSiO3 perovskites. , 2006, Acta crystallographica. Section B, Structural science.
[115] H. Kojitani,et al. High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system , 2004 .
[116] T. Gasparik. Transformation of enstatite — diopside — jadeite pyroxenes to garnet , 1989 .
[117] Stefano de Gironcoli,et al. High-pressure lattice dynamics and thermoelasticity of MgO , 2000 .
[118] Y. Ohishi,et al. Post-Perovskite Phase Transition , 2004 .
[119] P. B. Allen,et al. Thermodynamics of anharmonic crystals with application to Nb , 1975 .
[120] D. Weidner,et al. Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle , 1994 .
[121] T. Tsuchiya. First‐principles prediction of the P‐V‐T equation of state of gold and the 660‐km discontinuity in Earth's mantle , 2003 .
[122] John P. Brodholt,et al. Letters to Nature 934 , 2022 .
[123] T. Ahrens,et al. Melting of (Mg,Fe)2SiO4 at the Core-Mantle Boundary of the Earth , 1997, Science.
[124] Nicola Marzari,et al. Phonon anharmonicities in graphite and graphene. , 2007, Physical review letters.
[125] W. Holzapfel,et al. Equations of State for Cu, Ag, and Au for Wide Ranges in Temperature and Pressure up to 500 GPa and Above , 2001 .
[126] A. Oganov,et al. Ab initio molecular dynamics study of CaSiO3 perovskite at P-T conditions of earth's lower mantle , 2006 .
[127] S. Jacobsen,et al. Crystal structure of monoclinic hydrous wadsleyite [β-(Mg,Fe)2SiO4] , 1997 .
[128] High pressure effects on thermal properties of MgO , 1995, mtrl-th/9503007.
[129] G. R. Gathers,et al. The equation of state of platinum to 660 GPa (6. 6 Mbar) , 1989 .
[130] R. Hazen,et al. Comparative high-pressure crystal chemistry of wadsleyite, β-(Mg1–xFex)2SiO4, with x = 0 and 0.25 , 2000 .
[131] R. Cohen,et al. Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure , 1996, physics/9610023.
[132] T. Gasparik. Phase relations in the transition zone , 1990 .
[133] S. Ono,et al. Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle , 2004 .
[134] L. Stixrude,et al. Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .
[135] J. M. Brown,et al. Thermodynamic parameters in the Earth as determined from seismic profiles , 1981 .
[136] R. Jeanloz,et al. Tetragonal structure of CaSiO3 perovskite above 20 GPa , 2002 .
[137] Yanli Wang,et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .
[138] T. Duffy,et al. The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity , 2001, Nature.
[139] Foiles,et al. Evaluation of harmonic methods for calculating the free energy of defects in solids. , 1994, Physical review. B, Condensed matter.
[140] Lars Stixrude,et al. Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale , 2000 .