The measurement of dissolved and gaseous carbon dioxide concentration

In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO2. In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements.

[1]  John R. Carlson,et al.  The molecular basis of CO2 reception in Drosophila , 2007, Proceedings of the National Academy of Sciences.

[2]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[3]  Christian Domingo,et al.  State-of-the-Art Sensor Technology in Spain: Invasive and Non-Invasive Techniques for Monitoring Respiratory Variables , 2010, Sensors.

[4]  Maximilian Fleischer,et al.  Advances in application potential of adsorptive-type solid state gas sensors: high-temperature semiconducting oxides and ambient temperature GasFET devices , 2008 .

[5]  Andrew Mills,et al.  Equilibrium studies on colorimetric plastic film sensors for carbon dioxide , 1992 .

[6]  W. Knap,et al.  Domestic gas sensor with micromachined optical tunable filter , 1996 .

[7]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[8]  Jeffrey W. Fergus A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors , 2008 .

[9]  Steven D. Sargent,et al.  Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange , 2003 .

[10]  T. Bradley,et al.  Insects breathe discontinuously to avoid oxygen toxicity , 2005, Nature.

[11]  L. Lijklema,et al.  Carbon dioxide fluxes across the air-water interface and its impact on carbon availability in aquatic systems. , 1995 .

[12]  Gerald Gerlach,et al.  Introduction to Microsystem Technology: A Guide for Students , 2008 .

[13]  S. Herber Development of a hydrogel-based carbon dioxide sensor : a tool for diagnosing gastrointestinal ischemia , 2005 .

[14]  C. Davis,et al.  An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms , 2004 .

[15]  M. Meyerhoff,et al.  Simplified dual-lumen catheter design for simultaneous potentiometric monitoring of carbon dioxide and pH. , 1994, Analytical chemistry.

[16]  D. Wolf-Gladrow,et al.  Carbon dioxide, dissolved (Ocean) , 2009 .

[17]  C. Belda,et al.  Stability of solid electrolyte based thick-film CO2 sensors , 2009, Microelectron. Reliab..

[18]  Leslie B. Vosshall,et al.  Two chemosensory receptors together mediate carbon dioxide detection in Drosophila , 2007, Nature.

[19]  Comparative studies on the souring process of milk by means of enzymatic and electrochemical sensors , 2001 .

[20]  W. Weppner,et al.  Fundamental and practical aspects of CO2 sensors based of nasicon electrolytes , 2003 .

[21]  L T Wasserthal,et al.  Flight-motor-driven respiratory air flow in the hawkmoth Manduca sexta. , 2001, The Journal of experimental biology.

[22]  W. Cai,et al.  An Improved Potentiometric pCO2 Microelectrode , 1997 .

[23]  Jun Liu,et al.  Beta″-alumina solid electrolytes for solid state electrochemical CO2 gas sensors , 1990 .

[24]  Fatih Köleli,et al.  The reduction of CO2 on polyaniline electrode in a membrane cell , 2004 .

[25]  W. Chu Thin and thick film electrochemical CO2 sensors , 1992 .

[26]  W J Fisk,et al.  Associations between indoor CO2 concentrations and sick building syndrome symptoms in U.S. office buildings: an analysis of the 1994-1996 BASE study data. , 2000, Indoor air.

[27]  Herbert Märkl,et al.  High density fed-batch cultures for hybridoma cells performed with the aid of a kinetic model , 1996 .

[28]  H. H. Moebius,et al.  Solid-State Electrochemical Potentiometric Sensors for Gas Analysis , 2010 .

[29]  M. Gauthier,et al.  Solid‐State Detectors for the Potentiometric Determination of Gaseous Oxides I . Measurement in Air , 1977 .

[30]  R. Burnett,et al.  Calculations and correction factors used in determination of blood pH and blood gases. , 1974, Clinical chemistry.

[31]  Jennifer W. Parker,et al.  Fiber-optic sensors for pH and carbon dioxide using a self-referencing dye , 1993 .

[32]  Jan G. Korvink,et al.  I4.4 - Preconcentrator Module for the Implementation in Optical Gas Measurement Systems , 2009 .

[33]  D. Beer,et al.  Miniaturised carbon dioxide sensor designed for measurements within plant leaves , 2001 .

[34]  D. F. Parkhurst,et al.  Diffusion of CO2 and other gases inside leaves. , 1994, The New phytologist.

[35]  Werner E. Morf,et al.  Organic membranes for miniaturized electrochemical sensors: Fabrication of a combined pO2, pCO2 and pH sensor , 1994 .

[36]  Carles Cané,et al.  Non-selective NDIR array for gas detection , 2007, SPIE Microtechnologies.

[37]  R Fletcher,et al.  Sources of error and their correction in the measurement of carbon dioxide elimination using the Siemens-Elema CO2 Analyzer. , 1983, British journal of anaesthesia.

[38]  Werner Weppner,et al.  Solid-state electrochemical gas sensors☆ , 1987 .

[39]  I. Barnes,et al.  Tectonic relations of carbon dioxide discharges and earthquakes , 1980 .

[40]  J. Tautz,et al.  Perception of carbon dioxide and other “air-condition” parameters in the leaf cutting antAtta cephalotes , 1996, Naturwissenschaften.

[41]  Erika Kress-Rogers,et al.  Instrumentation and Sensors for the Food Industry , 1993 .

[42]  M. Gillies.,et al.  The Role of Carbon Dioxide in Host-Finding by Mosquitoes (Diptera: Culicidae): A Review , 1980 .

[43]  Kerry J. Dinsmore,et al.  Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications , 2010 .

[44]  T. King,et al.  Gas analysis using an infrared source with temporally varying temperature , 2001 .

[45]  Martin Ebermann,et al.  Aufbau und Betrieb eines Infrarot-Mikrospektrometers auf der Basis eines MEMS-FP-Filters , 2010 .

[46]  Gerald Gerlach,et al.  Thermal Infrared Sensors: Theory, Optimisation and Practice , 2011 .

[47]  A. Torkkeli,et al.  Electrically tuneable micromachined fabry-perot interferometer in gas analysis , 1997 .

[48]  N. D. Rooij,et al.  Integrated Blood-Gas Sensor for pO2, pCO2 and pH , 1993 .

[49]  P. Shuk,et al.  Solid state systems for the potentiometric determination of CO2 , 1996, Analytical and bioanalytical chemistry.

[51]  M. Moreno-Bondi,et al.  Fiber-optic sensing of carbon dioxide based on excited-state proton transfer to a luminescent ruthenium(II) complex , 1992 .

[52]  G. Stange,et al.  Carbon‐dioxide sensing structures in terrestrial arthropods , 1999, Microscopy research and technique.

[53]  Volkmar Norkus,et al.  Performance improvements for pyroelectric infrared detectors , 2006, SPIE Defense + Commercial Sensing.

[54]  G. Martinelli,et al.  CO2 and radon measurements in the Vogtland Area (Germany) ‐ A contribution to earthquake prediction research , 1995 .

[55]  Werner Weppner,et al.  Application of fast ionic conductors in solid state galvanic cells for gas sensors , 1986 .

[56]  C. C. Holbek The Radiometer ABL300 blood gas analyzer , 2005, Journal of Clinical Monitoring.

[57]  T. Seeley,et al.  Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. , 1974, Journal of insect physiology.

[58]  D. de Beer,et al.  A fast‐responding CO2 microelectrode for profiling sediments, microbial mats, and biofilms , 1997 .

[59]  O. Schäf,et al.  CO2/ SOx-sensors with different β“-aluminas as solid electrolytes , 1999 .

[60]  K. Cammann,et al.  DEVELOPMENT OF A DISSOLVED CARBON DIOXIDE SENSOR BASED ON A COULOMETRIC TITRATION , 1999 .

[61]  G. Gerlach,et al.  Review of micromachined thermopiles for infrared detection , 2007 .

[62]  J. Cech,et al.  The effects of hypercapnia on the growth of juvenile white sturgeon, Acipenser transmontanus , 1996 .

[63]  P. Eberhard The Design, Use, and Results of Transcutaneous Carbon Dioxide Analysis: Current and Future Directions , 2007, Anesthesia and analgesia.

[64]  M. Meyerhoff,et al.  Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide. , 1998, Biosensors & bioelectronics.

[65]  M. B. Jaffe,et al.  Infrared Measurement of Carbon Dioxide in the Human Breath: “Breathe-Through” Devices from Tyndall to the Present Day , 2008, Anesthesia and analgesia.

[66]  Andrew Mills,et al.  Optical sensors for carbon dioxide and their applications , 2009 .

[67]  K. Cammann,et al.  DEVELOPMENT OF A COULOMETRIC CO2 GAS SENSOR , 1998 .

[68]  N. Freeman,et al.  A CO2 titration electrode Part II: Development of the sensor , 1994 .

[69]  P. Carolan,et al.  Potential to Prevent Carbon Dioxide Rebreathing of Commercial Products Marketed to Reduce Sudden Infant Death Syndrome Risk , 2000, Pediatrics.

[70]  A. Bratov,et al.  The influence of CO(2) on ISFETs with polymer membranes and characterization of a carbonate ion sensor. , 2010, Talanta.

[71]  K. Sunagawa,et al.  Microfabricated needle-type sensors for pO/sub 2/, pCO/sub 2/, and pH , 2006, IEEE Sensors Journal.

[72]  J. Hildebrand,et al.  Floral CO2 Reveals Flower Profitability to Moths , 2004, Journal of Chemical Ecology.

[73]  Eric W. Jones,et al.  Uncooled thermopile infrared detector linear arrays with detectivity greater than 10/sup 9/ cmHz/sup 1/2//W , 1998 .

[74]  Otto S. Wolfbeis,et al.  Fiber-optic fluorosensor for oxygen and carbon dioxide , 1988 .

[75]  Kenzo Watanabe,et al.  The NDIR CO/sub 2/ monitor with smart interface for global networking , 2005, IEEE Transactions on Instrumentation and Measurement.

[76]  W. Weppner,et al.  Solid ionic conductor/semiconductor junctions for chemical sensors , 1993 .

[77]  J. Maier,et al.  Thermodynamic investigations of Na2ZrO3 by electrochemical means , 1986 .

[78]  H. Robertson,et al.  Evolution of the Gene Lineage Encoding the Carbon Dioxide Receptor in Insects , 2009, Journal of insect science.

[79]  S. Hermann,et al.  Direct oxygen measurements in the tracheal system of lepidopterous pupae using miniaturized amperometric sensors , 1994 .

[80]  D. Hall,et al.  The role of 1-octen-3-ol, acetone and carbon dioxide in the attraction of tsetse flies, Glossina spp. (Diptera: Glossinidae), to ox odour , 1985 .

[81]  U. Riebesell,et al.  Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems , 2006 .

[82]  S. von Caemmerer,et al.  Carbon Dioxide Diffusion inside Leaves , 1996, Plant physiology.

[83]  Å. Nordberg,et al.  Early warning of disturbances in a laboratory-scale MSW biogas process. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[84]  M. Meyerhoff In vivo blood-gas and electrolyte sensors: Progress and challenges , 1993 .

[85]  G. Sotnikova,et al.  Low Voltage CO$_2$-Gas Sensor Based on III–V Mid-IR Immersion Lens Diode Optopairs: Where we Are and How Far we Can Go? , 2010, IEEE Sensors Journal.

[86]  Pranamornkith Thamarath,et al.  Effects of postharvest treatments on storage quality of lime (Citrus latifolia Tanaka) fruit : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, New Zealand , 2009 .

[87]  U. Koch,et al.  Slug Flow—A Possible Explanation for Hydrogeochemical Earthquake Precursors at Bad Brambach, Germany , 2000 .

[88]  J. A. Krueger,et al.  Potentiometric gas sensing electrodes , 1973 .

[89]  Michael D. DeGrandpre,et al.  Measurement of seawater pCO2 using a renewable-reagent fiber optic sensor with colorimetric detection , 1993 .

[90]  H. Matsuoka,et al.  Use of plant leaf as CO2 gas sensing probe , 1986 .

[91]  Andrew G. Dickson,et al.  Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2 , 1994 .

[92]  Ralf Pörtner,et al.  Determination of dissolved CO(2) concentration and CO(2) production rate of mammalian cell suspension culture based on off-gas measurement. , 2002, Journal of biotechnology.

[93]  G. Stange Sensory and Behavioural Responses of Terrestrial Invertebrates to Biogenic Carbon Dioxide Gradients , 1996 .

[94]  Shuichi Shoji,et al.  Micro flow cell for blood gas analysis realizing very small sample volume , 1992 .

[95]  R. Kopelman,et al.  High-performance fiber-optic pH microsensors for practical physiological measurements using a dual-emission sensitive dye. , 1997, Analytical chemistry.

[96]  H. Möbius Galvanic solid electrolyte cells for the measurement of CO2 concentrations , 2004 .

[97]  R. J. Johns,et al.  A system for monitoring pulmonary ventilation. , 1969, Biomedical sciences instrumentation.

[98]  F. Scholz,et al.  A new pH-sensor based on quinhydrone , 1993 .

[99]  N. Yamazoe,et al.  Development of FET-type CO2 sensor operative at room temperature , 2004 .

[100]  B T Frohlich,et al.  Measurement and Control of Dissolved Carbon Dioxide in Mammalian Cell Culture Processes Using an in Situ Fiber Optic Chemical Sensor , 2000, Biotechnology progress.

[101]  Y. Sadaoka,et al.  Drift phenomena of electrochemical CO2 sensor with Pt,Na2CO3/Na+-electrolyte//YSZ/Pt structure , 2005 .

[102]  James N. Carleton,et al.  Mechanical model testing of rebreathing potential in infant bedding materials , 1998, Archives of disease in childhood.

[103]  T. Weber,et al.  Fetal carbon dioxide tension during human labour. , 1986, European journal of obstetrics, gynecology, and reproductive biology.

[104]  G. Kling,et al.  Carbon Dioxide Supersaturation in the Surface Waters of Lakes , 1994, Science.

[105]  Christine A Erdmann,et al.  Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. , 2004, Indoor air.

[106]  C. Osmond,et al.  The CO2 sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta , 1995, Oecologia.

[107]  J. Severinghaus,et al.  Electrodes for blood pO2 and pCO2 determination. , 1958, Journal of applied physiology.

[108]  C. N. Banwell,et al.  Fundamentals of molecular spectroscopy , 1966 .

[109]  Gerald Gerlach,et al.  Uncooled multispectral detectors , 1998, Optics & Photonics.

[110]  M. A. Jensen,et al.  Response time characteristics of the pCO2 electrode , 1979 .

[111]  R. Hesslein,et al.  Continuous measurement of CO2 for estimation of air‐water fluxes in lakes: An in situ technique , 1995 .

[112]  J. Heijnen,et al.  Determination of in vivo oxygen uptake and carbon dioxide evolution rates from off-gas measurements under highly dynamic conditions. , 2003, Biotechnology and bioengineering.

[113]  F. Scholz,et al.  A solid composite pH sensor based on quinhydrone , 1995 .

[114]  U. Guth,et al.  Electrical conductivity and crystal structure of pure and SrCO3-doped Na2CO3† , 1986 .

[115]  Frank K. Tittel,et al.  Development of a compact quantum cascade laser spectrometer for field measurements of CO2 isotopes , 2005 .

[116]  P. Schieberle,et al.  Milk and Dairy Products , 2004 .

[117]  T. Tille,et al.  A High-Precision NDIR $\hbox{CO}_{2}$ Gas Sensor for Automotive Applications , 2006, IEEE Sensors Journal.

[118]  O. Schäf,et al.  In-situ formation of thin-film like β′'-alumina layers on α-alumina substrates , 1997 .

[119]  S. Johnston,et al.  Gas monitors employing infrared LEDs , 1992 .