The modular decomposition of countable graphs. Definition and construction in monadic second-order logic
暂无分享,去创建一个
[1] T. Gallai. Transitiv orientierbare Graphen , 1967 .
[2] R. Lyndon,et al. Combinatorial Group Theory , 1977 .
[3] Bruno Courcelle. Frontiers of Infinite Trees , 1978, RAIRO Theor. Informatics Appl..
[4] Stephan Heilbrunner. An Algorithm for the Solution of Fixed-Point Equations for Infinite Words , 1980, RAIRO Theor. Informatics Appl..
[5] W. Cunningham. Decomposition of Directed Graphs , 1982 .
[6] Bruno Courcelle,et al. Fundamental Properties of Infinite Trees , 1983, Theor. Comput. Sci..
[7] F. Radermacher,et al. Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .
[8] E. Corominas,et al. On better quasi-ordering countable trees , 1985, Discret. Math..
[9] I. Rival. Graphs and Order , 1985 .
[10] David E. Muller,et al. The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..
[11] Wolfgang Thomas. On Frontiers of Regular Trees , 1986, RAIRO Theor. Informatics Appl..
[12] Roland Fraïssé. Theory of relations , 1986 .
[13] Bruce A. Reed,et al. P4-comparability graphs , 1989, Discret. Math..
[14] Bruno Courcelle,et al. Recursive Applicative Program Schemes , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[15] S. E. Markosyan,et al. ω-Perfect graphs , 1990 .
[16] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs IV: Definability Properties of Equational Graphs , 1990, Ann. Pure Appl. Log..
[17] Andrzej Ehrenfeucht,et al. Primitivity is Hereditary for 2-Structures , 1990, Theor. Comput. Sci..
[18] Didier Caucal,et al. On the Regular Structure of Prefix Rewriting , 1990, Theor. Comput. Sci..
[19] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[20] R. Diestel. Graph Decompositions: A Study in Infinite Graph Theory , 1990 .
[21] M. Nivat,et al. Algebraic languages , 1991 .
[22] Maurice Nivat,et al. Langages algébriques de mots biinfinis , 1991, Theor. Comput. Sci..
[23] William T. Trotter,et al. Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures , 1993, Discret. Math..
[24] Tero Harju,et al. Decompostion of Infinite Labeled 2-Structures , 1994, Results and Trends in Theoretical Computer Science.
[25] Bruno Courcelle,et al. Monadic Second-Order Definable Graph Transductions: A Survey , 1994, Theor. Comput. Sci..
[26] P. Ille. GRAPHES INDECOMPOSABLES INFINIS , 1994 .
[27] Anil Nerode,et al. Automatic Presentations of Structures , 1994, LCC.
[28] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs IX: Machines and their Behaviours , 1995, Theor. Comput. Sci..
[29] S. J. Pride. Geometric Methods in Combinatorial Semigroup Theory , 1995 .
[30] Tero Harju,et al. Structure and organization , 2014 .
[31] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..
[32] Tero Harju,et al. The Theory of 2-Structures - A Framework for Decomposition and Transformation of Graphs , 1997, Handbook of Graph Grammars.
[33] Bruno Courcelle,et al. The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.
[34] Klaus Barthelmann,et al. When Can an Equational Simple Graph Be Generated by Hyperedge Replacement? , 1998, MFCS.
[35] Hartmut Ehrig,et al. Handbook of graph grammars and computing by graph transformation: vol. 3: concurrency, parallelism, and distribution , 1999 .
[36] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[37] Bruno Courcelle,et al. On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..
[38] Bruno Courcelle,et al. The evaluation of first-order substitution is monadic second-order compatible , 2002, Theor. Comput. Sci..
[39] J. van Leeuwen,et al. Theoretical Computer Science , 2003, Lecture Notes in Computer Science.
[40] Bruno Courcelle,et al. The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..
[41] Fabien de Montgolfier,et al. De'composition Modulaire des Graphes. The'orie, Extensions et Algorithmes , 2003 .
[42] Arnaud Carayol,et al. The Caucal Hierarchy of Infinite Graphs in Terms of Logic and Higher-Order Pushdown Automata , 2003, FSTTCS.
[43] Achim Blumensath,et al. Finite Presentations of Infinite Structures: Automata and Interpretations , 2004, Theory of Computing Systems.
[44] Bruno Courcelle,et al. Clique-width of countable graphs: a compactness property , 2000, Electron. Notes Discret. Math..
[45] D. Renault. Etude des graphes planaires cofinis selon leurs groupes de symétries , 2004 .
[46] Michael Benedikt,et al. Towards a Characterization of Order-Invariant Queries over Tame Structures , 2005, CSL.
[47] Bruno Courcelle,et al. The Modular Decomposition of Countable Graphs: Constructions in Monadic Second-Order Logic , 2005, CSL.
[48] Viktor Schuppan,et al. Linear Encodings of Bounded LTL Model Checking , 2006, Log. Methods Comput. Sci..
[49] Bruno Courcelle,et al. The monadic second-order logic of graphs XV: On a conjecture by D. Seese , 2006, J. Appl. Log..
[50] Bruno Courcelle,et al. The monadic second-order logic of graphs XVI : Canonical graph decompositions , 2005, Log. Methods Comput. Sci..
[51] Charles S. Peirce,et al. Studies in Logic , 2008 .
[52] C. Dubey. Indecomposable Graphs , .