Gradient Flow Approach to Geometric Convergence Analysis of Preconditioned Eigensolvers
暂无分享,去创建一个
[1] Andrew V. Knyazev,et al. A subspace preconditioning algorithm for eigenvector/eigenvalue computation , 1995, Adv. Comput. Math..
[2] NEYMEYR A BSTRACT. A GEOMETRIC THEORY FOR PRECONDITIONED INVERSE ITERATION II : CONVERGENCE ESTIMATES KLAUS , 2009 .
[3] A. Knyazev. Preconditioned Eigensolvers: Practical Algorithms , 1999 .
[4] Andrew Knyazev,et al. Preconditioned Eigensolvers - an Oxymoron? , 1998 .
[5] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[6] Richard B. Lehoucq,et al. Dynamical Systems and Non-Hermitian Iterative Eigensolvers , 2009, SIAM J. Numer. Anal..
[7] A. Knyazev. Convergence rate estimates for iterative methods for a mesh symmetrie eigenvalue problem , 1987 .
[8] K. Neymeyr. A geometric theory forpreconditioned inverse iterationII: Convergence estimates , 2001 .
[9] E. D'yakonov. Optimization in Solving Elliptic Problems , 1995 .
[10] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[11] A. Knyazev,et al. A Geometric Theory for Preconditioned Inverse Iteration. III:A Short and Sharp Convergence Estimate for Generalized EigenvalueProblems. , 2001 .
[12] K. Neymeyr. A geometric theory for preconditioned inverse iteration. I : Extrema of the Rayleigh quotient , 2001 .