Excitation power and Er3+ concentration effect on the color quality parameters in Y2O3:Er3+/Yb3+/Tm3+ nanophosphors

Abstract. Y2O3 nanocrystalline phosphors doped with Er3  +    /  Yb3  +    /  Tm3  +   ions were prepared using thermal decomposition technique at 500°C. Pure cubic phase of Y2O3 with an average crystallite size ∼29  ±  4  nm was determined from x-ray diffraction and high-resolution transmission electron microscope measurements. Their upconversion luminescence spectra were measured under 975-nm laser diode excitation at room temperature. A bright blue emission was simultaneously observed at 480 nm due to the G41  →  H63 transition of Tm3  +   ions, with the green (550 nm) and red (670 nm) emissions due to the H11/22, S3/24  →  I15/24 and F9/24  →  I15/24 transitions of Er3  +   ions, respectively. Relative emission intensities of these colors were significantly affected by the Er3  +   concentration as well as the excitation power density of 975-nm laser light. Color quality parameters and the color tuning abilities were determined from the Commission International de I’Echairage 1931 chromaticity diagram analysis, color rendering index, and their correlated color temperature values. A careful color tuning from cool to warm white light in Y2O3  :  Er3  +    /  Yb3  +    /  Tm3  +   phosphors was achieved by controlling both the doping concentration of Er3  +   ions and the excitation power density of the 975-nm laser light.

[1]  Kezhi Zheng,et al.  Color control and white upconversion luminescence of LaOF:Ln3+ (Ln = Yb, Er, Tm) nanocrystals prepared by the sol-gel Pechini method. , 2013, Dalton transactions.

[2]  S. Genç,et al.  Bright white up-conversion emission from sol–gel derived Yb3+/Er3+/Tm3+: Y2SiO5 nanocrystalline powders , 2015 .

[3]  S. Singh,et al.  Diode laser pumped Gd2O3:Er3+/Yb3+ phosphor as optical nano-heater , 2010 .

[4]  Kaikai Xu,et al.  Field-Effect Electroluminescence Spectra of Reverse-Biased PN Junctions in Silicon Device for Microdisplay , 2016, Journal of Display Technology.

[5]  Shanshan Huang,et al.  Controllable and white upconversion luminescence in BaYF5:Ln3+ (Ln = Yb, Er, Tm) nanocrystals , 2011 .

[6]  L. Luo,et al.  Effects of Er doping site and concentration on piezoelectric, ferroelectric, and optical properties of ferroelectric Na0.5Bi0.5TiO3 , 2013 .

[7]  Wee,et al.  Protein release from alginate matrices. , 1998, Advanced drug delivery reviews.

[8]  Lidong Chen,et al.  Upconversion Luminescence in Er3+ Doped and Yb3+/Er3+ Codoped Yttria Nanocrystalline Powders , 2004 .

[9]  Lili Wang,et al.  Up-conversion white light of Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors , 2008 .

[10]  Ilku Nam,et al.  A Three-Terminal n+-p-n+ Silicon CMOS Light-Emitting Device for the New Fully Integrated Optical-Type Fingerprint Recognition System , 2016, Journal of Display Technology.

[11]  K. U. Kumar,et al.  Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers , 2015 .

[12]  A. Speghini,et al.  Cross-Relaxation and Upconversion Processes in Pr3+ Singly Doped and Pr3+/Yb3+ Codoped Nanocrystalline Gd3Ga5O12: The Sensitizer/Activator Relationship , 2008 .

[13]  Biopolymer-assisted synthesis of yttrium oxide nanoparticles , 2014 .

[14]  C. McCamy,et al.  Correlated color temperature as an explicit function of chromaticity coordinates , 1992 .

[15]  F. Song,et al.  Color-tunable emission by adjusting sensitizer (Yb 3+ ) and excitation power of 980 nm in NaGdTiO 4 :Yb 3+ /Tm 3+ /Er 3+ phosphors for light emitting diodes , 2018 .

[16]  Gokhan Bilir,et al.  Blue cooperative upconversion and white light emission from Y2Si2O7:Yb3+ nanopowders due to 975-nm infrared excitation , 2016 .

[17]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[18]  Xueru Zhang,et al.  Dual functions of Er3+/Yb3+ codoped Gd2(MoO4)3 phosphor: temperature sensor and optical heater , 2017 .

[19]  Kaikai Xu,et al.  Integrated Silicon Directly Modulated Light Source Using p-Well in Standard CMOS Technology , 2016, IEEE Sensors Journal.

[20]  Helmut Schäfer,et al.  Upconverting nanoparticles. , 2011, Angewandte Chemie.

[21]  Markus P. Hehlen,et al.  Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .

[22]  C. Ross Found , 1869, The Dental register.

[23]  S. Tabanli,et al.  Color tunable up-conversion emission from Er3+:Y2O3 nanoparticles embedded in PMMA matrix , 2017 .

[24]  C. Goutaudier,et al.  Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic and monoclinic Gd2O3 ☆ , 2001 .

[25]  R. Pielaszek method for determination of the grain size distribution from powder diffraction line profile , 2004 .

[26]  A. Speghini,et al.  Enhancement of Red Emission (4F9/2 → 4I15/2) via Upconversion in Bulk and Nanocrystalline Cubic Y2O3:Er3+ , 2002 .

[27]  Shengming Zhou,et al.  White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic , 2011 .

[28]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[29]  K. Mishra,et al.  Upconversion Based Tunable White-Light Generation in Ln:Y2O3 Nanocrystalline Phosphor (Ln = Tm/Er/Yb) , 2011, Journal of Fluorescence.

[30]  F. Auzel,et al.  Materials and devices using double-pumped-phosphors with energy transfer , 1973 .

[31]  Chunguang Li,et al.  Current Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication , 2016, Advanced science.

[32]  W. Gong,et al.  Preparation and upconversion luminescence of Er3 +/Yb3 + codoped Y2Ti2O7 nanocrystals , 2012 .

[33]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[34]  S. H. Kim,et al.  Intense up-conversion luminescence in Er3+/Yb3+ co-doped CeO2 powders. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[35]  M. Aranda,et al.  Crystal engineering in confined spaces. A novel method to grow crystalline metal phosphonates in alginate gel systems , 2012 .

[36]  Quan Yuan,et al.  Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. , 2014, Angewandte Chemie.

[37]  Hong Zhang,et al.  Effect of annealing on upconversion luminescence of ZnO : Er3+ nanocrystals and high thermal sensitivity , 2007 .

[38]  Handong Sun,et al.  Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles , 2014 .

[39]  Judith Grimm,et al.  Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+ , 2006 .

[40]  Chongfeng Guo,et al.  Thermometric and optical heating bi-functional properties of upconversion phosphor Ba5Gd8Zn4O21:Yb3+/Tm3+ , 2015 .

[41]  Jun Lin,et al.  Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures , 2012 .

[42]  M. Bass,et al.  Photo-luminescent screens for optically written displays based on upconversion of near infrared light , 2004 .

[43]  Xiaogang Liu,et al.  Recent Advances in the Chemistry of Lanthanide‐Doped Upconversion Nanocrystals , 2009 .

[44]  S. Tabanli,et al.  Optical properties and Judd–Ofelt analysis of Nd2O3 nanocrystals embedded in polymethyl methacrylate , 2017 .

[45]  Ralph Weissleder,et al.  Upconverting luminescent nanomaterials: application to in vivo bioimaging. , 2009, Chemical communications.

[46]  Xiaojun Wang,et al.  Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er3+ and Tm3+ tri-doped Lu2O3 nanocrystals , 2011 .

[47]  Song Wang,et al.  Lanthanide doped Y6O5F8/YF3 microcrystals: phase-tunable synthesis and bright white upconversion photoluminescence properties. , 2010, Dalton transactions.

[48]  T. Nann,et al.  Monodisperse upconversion GdF3:Yb, Er rhombi by microwave-assisted synthesis , 2011, Nanoscale Research Letters.

[49]  Teng‐Ming Chen,et al.  Sr3B2O6:Ce3+,Eu2+: A potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes , 2007 .

[50]  Wei Feng,et al.  Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. , 2011, Journal of the American Chemical Society.

[51]  P. Scherrer,et al.  Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen , 1918 .

[52]  S. Wade,et al.  Fluorescence intensity ratio technique for optical fiber point temperature sensing , 2003 .

[53]  Meng Wang,et al.  Upconversion nanoparticles: synthesis, surface modification and biological applications. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[54]  Yanhua Song,et al.  Sr3Al2O5Cl2:Ce3+,Eu2+: A potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes , 2009 .

[55]  A. Speghini,et al.  Bright white upconversion emission from Tm3+/Yb3+/Er3+ doped Lu3Ga5O12 nanocrystals , 2008 .