Smoothed particle hydrodynamics and magnetohydrodynamics

This paper presents an overview and introduction to smoothed particle hydrodynamics and magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the ndspmhd SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.

[1]  Peter A. Thomas,et al.  Multiphase smoothed-particle hydrodynamics , 2001 .

[2]  Daniel J. Price,et al.  Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.

[3]  Daniel J. Price Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH , 2007, J. Comput. Phys..

[4]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[5]  Daniel J. Price,et al.  Variational principles for relativistic smoothed particle hydrodynamics , 2001 .

[6]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[7]  P. Janhunen,et al.  A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .

[8]  Richard P. Nelson,et al.  Variable smoothing lengths and energy conservation in smoothed particle hydrodynamics , 1994 .

[9]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[10]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[11]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[12]  Michael L. Norman,et al.  A test suite for magnetohydrodynamical simulations , 1992 .

[13]  Daniel J. Price,et al.  An energy‐conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and N‐body codes , 2006, astro-ph/0610872.

[14]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[15]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[16]  Carl Eckart,et al.  Variation Principles of Hydrodynamics , 1960 .

[17]  Andrea Mignone,et al.  A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme , 2009, J. Comput. Phys..

[18]  Daniel J. Price,et al.  magma: a three-dimensional, Lagrangian magnetohydrodynamics code for merger applications , 2007, 0705.1441.

[19]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[21]  G. Dilts The moving-least-squares-particle hydrodynamics method (MLSPH) , 1997 .

[22]  V. Springel,et al.  Thermal conduction in cosmological SPH simulations , 2004, astro-ph/0401456.

[23]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[24]  Volker Springel,et al.  Particle hydrodynamics with tessellation techniques , 2009, 0912.0629.

[25]  Jan Trulsen,et al.  Multidimensional MHD Shock Tests of Regularized Smoothed Particle Hydrodynamics , 2006 .

[26]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[27]  Adriano H. CerqueiraElisabete M. de Gouveia Dal Pino,et al.  Three-dimensional Magnetohydrodynamic Simulations of Radiatively Cooling, Pulsed Jets , 2001, astro-ph/0103399.

[28]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[29]  H. Ruder,et al.  Smoothed Particle Hydrodynamics: Physical Viscosity and the Simulation of Accretion Disks , 1994 .

[30]  David P. Stern,et al.  Representation of magnetic fields in space , 1976 .

[31]  Garching,et al.  Smoothed particle hydrodynamics for galaxy‐formation simulations: improved treatments of multiphase gas, of star formation and of supernovae feedback , 2003 .

[32]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[33]  Matthew R. Bate,et al.  Smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation , 2004 .

[34]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Adiabatic and Isothermal Magnetohydrodynamics , 1998 .

[35]  Daniel J. Price,et al.  The effect of magnetic fields on star cluster formation , 2008, 0801.3293.

[36]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[37]  J. Monaghan SPH without a Tensile Instability , 2000 .

[38]  Joseph John Monaghan,et al.  Ultrarelativistic SPH , 1997 .

[39]  Shu-ichiro Inutsuka Reformulation of Smoothed Particle Hydrodynamics with Riemann Solver , 2002 .

[40]  Daniel J. Price Smoothed Particle Magnetohydrodynamics – IV. Using the vector potential , 2009, 0909.2469.

[41]  Zdzislaw Meglicki Analysis and Applications of Smoothed Particle Magnetohydrodynamics , 1995 .

[42]  Jan Trulsen,et al.  Two-dimensional MHD Smoothed Particle Hydrodynamics Stability Analysis , 2004 .

[43]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[44]  Axel Brandenburg,et al.  Magnetic field evolution in simulations with Euler potentials , 2009, 0907.1906.

[45]  J. Trulsen,et al.  Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks , 2001 .

[46]  Daniel J. Price,et al.  A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence , 2010, 1004.1446.

[47]  University of Exeter,et al.  On the diffusive propagation of warps in thin accretion discs , 2010, 1002.2973.

[48]  A. V Kats Variational principle and canonical variables in hydrodynamics with discontinuities , 2001 .

[49]  Dongsu Ryu,et al.  Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1995 .

[50]  J. Robert Buchler,et al.  The Numerical Modelling of Nonlinear Stellar Pulsations , 1990 .

[51]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[52]  Paul C. Clark,et al.  Protostellar collapse and fragmentation using an MHD gadget , 2010, 1008.3790.

[53]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[54]  Walter Dehnen Towards optimal softening in three-dimensional N-body codes - I. Minimizing the force error , 2000 .

[55]  James R. Murray,et al.  SPH simulations of tidally unstable accretion discs in cataclysmic variables , 1995, astro-ph/9511031.

[56]  J. Monaghan,et al.  A refined particle method for astrophysical problems , 1985 .

[57]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[58]  H. Pongracic,et al.  The Influence of Magnetic Fields on Star Formation , 1996, Publications of the Astronomical Society of Australia.

[59]  Paul J. Dellar,et al.  A note on magnetic monopoles and the one-dimensional MHD Riemann problem , 2001 .

[60]  Daniel J. Price Magnetic fields in astrophysics , 2004 .

[61]  W. Benz Smooth Particle Hydrodynamics: A Review , 1990 .

[62]  R. Salmon HAMILTONIAN FLUID MECHANICS , 1988 .

[63]  George Field Magnetic helicity in astrophysics , 1986 .

[64]  K. Dolag,et al.  Magnetic field structure due to the global velocity field in spiral galaxies , 2009, 0905.0351.

[65]  P. Español,et al.  Voronoi Fluid Particle Model for Euler Equations , 2005 .

[66]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[67]  H. M. P. Couchman,et al.  Simulating the formation of a cluster of galaxies , 1992 .

[68]  Tom Abel,et al.  rpSPH: a novel smoothed particle hydrodynamics algorithm , 2010, 1003.0937.

[69]  R. van de Weygaert,et al.  Density estimators in particle hydrodynamics DTFE versus regular SPH , 2003, astro-ph/0303071.

[70]  Joseph P. Morris,et al.  A Study of the Stability Properties of Smooth Particle Hydrodynamics , 1996, Publications of the Astronomical Society of Australia.

[71]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – II. Variational principles and variable smoothing-length terms , 2003, astro-ph/0310790.

[72]  H. Couchman,et al.  Mesh-refined P3M - A fast adaptive N-body algorithm , 1991 .

[73]  Anthony Peter Whitworth,et al.  Implementations and tests of Godunov-type particle hydrodynamics , 2003 .

[74]  J. Monaghan,et al.  Extrapolating B splines for interpolation , 1985 .

[75]  James Wadsley,et al.  On the treatment of entropy mixing in numerical cosmology , 2008 .

[76]  Anthony Peter Whitworth,et al.  Modelling ambipolar diffusion with two‐fluid smoothed particle hydrodynamics , 2004 .

[77]  K. Dolag,et al.  SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES , 2009, 0911.3327.

[78]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – I. Algorithm and tests in one dimension , 2003, astro-ph/0310789.

[79]  Gregory G. Howes,et al.  Gradient Particle Magnetohydrodynamics: A Lagrangian Particle Code for Astrophysical Magnetohydrodynamics , 2001, astro-ph/0107454.

[80]  Klaus Dolag,et al.  SPH simulations of magnetic fields in galaxy clusters (proceedings) , 1999 .

[81]  Roland W. Lewis,et al.  A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications , 2004 .

[82]  Anthony Peter Whitworth,et al.  A new prescription for viscosity in smoothed particle hydrodynamics. , 1996 .

[83]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[84]  L. Brookshaw,et al.  A Method of Calculating Radiative Heat Diffusion in Particle Simulations , 1985, Publications of the Astronomical Society of Australia.

[85]  Dongsu Ryu,et al.  Numerical magetohydrodynamics in astronphysics: Algorithm and tests for one-dimensional flow` , 1995 .

[86]  Paul R. Woodward,et al.  Extension of the Piecewise Parabolic Method to Multidimensional Ideal Magnetohydrodynamics , 1994 .

[87]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[88]  Gabor Toth,et al.  Conservative and orthogonal discretization for the Lorentz force , 2002 .

[89]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[90]  J. Monaghan,et al.  Solidification using smoothed particle hydrodynamics , 2005 .

[91]  David P. Stern,et al.  The motion of magnetic field lines , 1966 .

[92]  K. Dolag,et al.  An MHD gadget for cosmological simulations , 2008, 0807.3553.

[93]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[94]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[95]  Stephan Rosswog,et al.  Astrophysical smooth particle hydrodynamics , 2009, 0903.5075.

[96]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[97]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[98]  Paul W. Cleary,et al.  Flow modelling in casting processes , 2002 .

[99]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[100]  Daniel J. Price,et al.  The impact of magnetic fields on single and binary star formation , 2007, astro-ph/0702410.

[101]  Walter Dehnen,et al.  Inviscid smoothed particle hydrodynamics , 2010 .

[102]  Joseph John Monaghan,et al.  SPH and Riemann Solvers , 1997 .

[103]  Dennis W. Quinn,et al.  An Analysis of 1-D Smoothed Particle Hydrodynamics Kernels , 1996 .

[104]  Tom Abel rpSPH: a much improved Smoothed Particle Hydrodynamics Algorithm , 2010 .

[105]  Daniel J. Price,et al.  Magnetic fields and the dynamics of spiral galaxies , 2007, 0710.3558.

[106]  Joseph John Monaghan,et al.  Energy transfer in a particle α model , 2004 .

[107]  G. J. Phillips,et al.  A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds , 1985 .

[108]  Volker Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001 .

[109]  S Rosswog,et al.  Producing Ultrastrong Magnetic Fields in Neutron Star Mergers , 2006, Science.

[110]  J. Monaghan SPH compressible turbulence , 2002, astro-ph/0204118.

[111]  Matthew R. Bate,et al.  A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux‐limited diffusion approximation , 2005 .

[112]  Daniel J. Price,et al.  Inefficient star formation: the combined effects of magnetic fields and radiative feedback , 2009, 0904.4071.