Some Identities on Type 2 Degenerate Bernoulli Polynomials of the Second Kind

I recent years, many mathematicians studied various degenerate version of some spcial polynomials of which quite a few interesting results were discovered. In this paper, we introduce the type 2 degenerate Bernoulli polynomials of the second kind and their higher-order analogues, and study some identities and expressions for these polynomials. Specially, we obtain a relation between the type 2 degenerate Bernoulli polynomials of the second kind and degenerate Bernoulli polynomials of the second kind, and identity involving hihger-order analogues of those polynomials and the degenerate stirling number of the second kin, and and expression of higher-order analogues of those polynomials in terms of the higher-order type 2 degenerate Bernoulli polynomials and the degenerate stirling number of the first kind.

[1]  Taekyun Kim,et al.  A note on type 2 Changhee and Daehee polynomials , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[2]  Taekyun Kim,et al.  Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[3]  Taekyun Kim,et al.  Degenerate Laplace transform and degenerate gamma function , 2017, 1701.06881.

[4]  Taekyun Kim A note on degenerate stirling polynomials of the second kind , 2017 .

[5]  Taekyun Kim,et al.  Degenerate central factorial numbers of the second kind , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[6]  Taekyun Kim,et al.  Degenerate r-Stirling Numbers and r-Bell Polynomials , 2018 .

[7]  Taekyun Kim,et al.  A note on type 2 degenerate Euler and Bernoulli polynomials , 2019 .

[8]  Xin Lin,et al.  Identities involving trigonometric functions and Bernoulli numbers , 2018, Appl. Math. Comput..

[9]  Leonard Carlitz,et al.  A degenerate Staudt-Clausen theorem , 1956 .

[10]  Serkan Araci,et al.  Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials , 2014 .

[11]  Dae San Kim,et al.  Identities of Symmetry for Type 2 Bernoulli and Euler Polynomials , 2019, Symmetry.

[12]  Taekyun Kim,et al.  Differential equations associated with degenerate Changhee numbers of the second kind , 2018, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[13]  Leonard Carlitz,et al.  $q$-Bernoulli and Eulerian numbers , 1954 .

[14]  Dae San Kim,et al.  Degenerate Stirling Polynomials of the Second Kind and Some Applications , 2019, Symmetry.

[15]  Taekyun Kim,et al.  Identities of Symmetry for Degenerate Euler Polynomials and Alternating Generalized Falling Factorial Sums , 2017 .

[16]  Steven Roman The Umbral Calculus , 1984 .