Motion-induced synchronization in metapopulations of mobile agents

We study the influence of motion on the emergence of synchronization in a metapopulation of random walkers moving on a heterogeneous network and subject to Kuramoto interactions at the network nodes. We discover a novel mechanism of transition to macroscopic dynamical order induced by the walkers' motion. Furthermore, we observe two different microscopic paths to synchronization: depending on the rules of the motion, either low-degree nodes or the hubs drive the whole system towards synchronization. We provide analytical arguments to understand these results.

[1]  Alessandro Vespignani,et al.  Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. , 2007, Journal of theoretical biology.

[2]  J. Kurths,et al.  Synchronization in networks of mobile oscillators. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[4]  Alessandro Vespignani,et al.  Modeling human mobility responses to the large-scale spreading of infectious diseases , 2011, Scientific reports.

[5]  W. Marsden I and J , 2012 .

[6]  Vito Latora,et al.  Understanding mobility in a social petri dish , 2011, Scientific Reports.

[7]  S. Boccaletti,et al.  Synchronization is enhanced in weighted complex networks. , 2005, Physical review letters.

[8]  J Gómez-Gardeñes,et al.  Emerging meso- and macroscales from synchronization of adaptive networks. , 2011, Physical review letters.

[9]  S. Strogatz Exploring complex networks , 2001, Nature.

[10]  Stefano Boccaletti,et al.  The Synchronized Dynamics of Complex Systems , 2008 .

[11]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[12]  Toshio Aoyagi,et al.  Co-evolution of phases and connection strengths in a network of phase oscillators. , 2009, Physical review letters.

[13]  A. Pluchino,et al.  CHANGING OPINIONS IN A CHANGING WORLD: A NEW PERSPECTIVE IN SOCIOPHYSICS , 2004 .

[14]  Alessandro Vespignani,et al.  The role of the airline transportation network in the prediction and predictability of global epidemics , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[16]  Alex Arenas,et al.  Paths to synchronization on complex networks. , 2006, Physical review letters.

[17]  Sergio Gómez,et al.  Explosive synchronization transitions in scale-free networks. , 2011, Physical review letters.

[18]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[19]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[20]  Luigi Fortuna,et al.  Dynamical network interactions in distributed control of robots. , 2006, Chaos.

[21]  Alex Arenas,et al.  Traffic-driven epidemic spreading in finite-size scale-free networks , 2009, Proceedings of the National Academy of Sciences.

[22]  Alessandro Vespignani,et al.  Invasion threshold in heterogeneous metapopulation networks. , 2007, Physical review letters.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  L. Fortuna,et al.  Spatial pinning control. , 2012, Physical review letters.

[25]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[26]  S. Boccaletti,et al.  Synchronization of moving chaotic agents. , 2008, Physical review letters.

[27]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[28]  E. Ott,et al.  Adaptive synchronization of dynamics on evolving complex networks. , 2008, Physical review letters.

[29]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[30]  Vito Latora,et al.  Entropy rate of diffusion processes on complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[32]  L Prignano,et al.  Tuning synchronization of integrate-and-fire oscillators through mobility. , 2013, Physical review letters.

[33]  Vito Latora,et al.  Synchronization properties of network motifs , 2006, physics/0609126.

[34]  David Gfeller,et al.  Spectral coarse graining and synchronization in oscillator networks. , 2007, Physical review letters.

[35]  Changsong Zhou,et al.  Dynamical weights and enhanced synchronization in adaptive complex networks. , 2006, Physical review letters.

[36]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[37]  J. Gómez-Gardeñes,et al.  Maximal-entropy random walks in complex networks with limited information. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[39]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[40]  Changsong Zhou,et al.  Universality in the synchronization of weighted random networks. , 2006, Physical review letters.

[41]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[42]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.