CHAOTIC DYNAMICS OF THREE-DIMENSIONAL H ENON MAPS THAT ORIGINATE FROM A HOMOCLINIC BIFURCATION

AbstractWe study bifurcations of a three-dimensional diffeomorphism, g 0 , that has a quadratichomoclinic tangency to a saddle-focus fixed point with multipliers (λe iϕ ,λe − ,γ), where0 <λ<1 <|γ| and |λ 2 γ| = 1. We show that in a three-parameter family, g e , of dif-feomorphisms close to g 0 , there exist infinitely many open regions near e= 0 where thecorresponding normal form of the first return map to a neighborhood of a homoclinic pointis a three-dimensional H´enon-like map. This map possesses, in some parameter regions, a“wild-hyperbolic” Lorenz-type strange attractor. Thus, we show that this homoclinic bifur-cation leads to a strange attractor. We also discuss the place that these three-dimensionalH´enon maps occupy in the class of quadratic volume-preserving diffeomorphisms. 1 Introduction In thispaperwe areconcerned with thestudyofthethree-dimensional map (¯x,y,¯ z¯) = f(x,y,z) ∈R 3 defined byx¯ = y, ¯y = z, z¯ = M 1 +Bx+M 2 y−z 2 , (1)with three parameters, M 1 , M 2 , and B. This map is a natural generalization of the famous two-dimensional H´enon map [H´76]; indeed, like the latter, the map (1) is quadratic, has co nstantJacobian det(Df) ≡ Band moreover, when B= 0, reduces to the two-dimensional H´enon map.

[1]  Heinrich W. E. Jung Über ganze birationale Transformationen der Ebene. , 1942 .

[2]  Andrey Shilnikov,et al.  On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .

[3]  L. P. Šil'nikov,et al.  ON THREE-DIMENSIONAL DYNAMICAL SYSTEMS CLOSE TO SYSTEMS WITH A STRUCTURALLY UNSTABLE HOMOCLINIC CURVE. II , 1972 .

[4]  James A. Yorke,et al.  How often do simple dynamical processes have infinitely many coexisting sinks? , 1986 .

[5]  A. Bazzani Normal form theory for volume preserving maps , 1993 .

[6]  L. Shilnikov,et al.  Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. , 1996, Chaos.

[7]  D. Turaev,et al.  Homoclinic Tangencies of an Arbitrary Order in Newhouse Domains , 2001 .

[8]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[9]  L. Shilnikov,et al.  On Moduli of Systems with a Structurally Unstable Homoclinic POINCARÉ Curve , 1993 .

[10]  S. Newhouse,et al.  The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms , 1979 .

[11]  Valentin Afraimovich,et al.  Origin and structure of the Lorenz attractor , 1977 .

[12]  D. Turaev Polynomial approximations of symplectic dynamics and richness of chaos in non-hyperbolic area-preserving maps , 2003 .

[13]  F. Forstnerič Actions of (R,+) and (C,+) on complex manifolds , 1996 .

[14]  Dmitry Turaev,et al.  Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.

[15]  L. Shilnikov,et al.  Пример дикого странного аттрактора@@@An example of a wild strange attractor , 1998 .

[16]  Daniel D. Joseph,et al.  Nonlinear dynamics and turbulence , 1983 .

[17]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[18]  Shmuel Friedland,et al.  Dynamical properties of plane polynomial automorphisms , 1989, Ergodic Theory and Dynamical Systems.

[19]  Ivan Shestakov,et al.  The tame and the wild automorphisms of polynomial rings in three variables , 2003 .

[20]  W. Engel Ganze Cremona-Transformationen von Primzahlgrad in der Ebene , 1958 .

[21]  J. C. Tatjer Three-dimensional dissipative diffeomorphisms with homoclinic tangencies , 2001, Ergodic Theory and Dynamical Systems.

[22]  D. Turaev,et al.  On dynamic properties of diffeomorphisms with homoclinic tangency , 2005 .

[23]  Dmitry Turaev,et al.  An example of a wild strange attractor , 1998 .

[24]  Christian Mira,et al.  Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .

[25]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[26]  Jürgen Moser,et al.  On quadratic symplectic mappings , 1994 .

[27]  J. Meiss,et al.  Quadratic volume preserving maps , 1997, chao-dyn/9706001.

[28]  L. Shilnikov,et al.  NORMAL FORMS AND LORENZ ATTRACTORS , 1993 .

[29]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .