Dependence of effective thermal conductivity of composite materials on the size of filler particles
暂无分享,去创建一个
[1] W. Jiajun,et al. Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites , 2004 .
[2] L. Ibos,et al. Anomalous behavior of thermal conductivity and diffusivity in polymeric materials filled with metallic particles , 2005 .
[3] Wenying Zhou,et al. Thermal Properties of Heat Conductive Silicone Rubber Filled with Hybrid Fillers , 2008 .
[4] M. Shen,et al. Thermal conductivity model of filled polymer composites , 2011 .
[5] R. S. Bhoopal,et al. PREDICTION OF EFFECTIVE THERMAL CONDUCTIVITY OF POLYMER COMPOSITES USING AN ARTIFICIAL NEURAL NETWORK APPROACH , 2012 .
[6] B. Weidenfeller,et al. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene , 2004 .
[7] F. Stoian,et al. Evaluation of the effective thermal conductivity of composite polymers by considering the filler size distribution law , 2009 .
[8] Shyam S. Sablani,et al. Neural networks for predicting thermal conductivity of bakery products , 2002 .
[9] D. A. G. Bruggeman. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .
[10] Prediction of effective thermal conductivity of cellular and polymer composites , 2011 .
[11] Zhi‐Kang Xu,et al. Preparation and properties of polyimide/aluminum nitride composites , 2004 .
[12] Gu Xu,et al. Thermally conductive polymer composites for electronic packaging , 1997 .
[13] I. Tavman,et al. Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites , 2007 .
[14] S. Cheng,et al. A technique for predicting the thermal conductivity of suspensions, emulsions and porous materials , 1970 .
[15] C. K. Spillman,et al. Neural network modeling of physical properties of ground wheat. , 1998 .
[16] R. S. Bhoopal,et al. Prediction of effective thermal conductivity of moist porous materials using artificial neural network approach , 2011 .
[17] J. Maxwell. A Treatise on Electricity and Magnetism , 1873, Nature.
[18] R. Prasher,et al. An Effective Unit Cell Approach to Compute the Thermal Conductivity of Composites With Cylindrical Particles , 2003 .
[19] Xiufeng Song,et al. Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions , 2007 .
[20] Shyam S. Sablani,et al. Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity , 2003 .
[21] Ching-Ping Wong,et al. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging , 1999 .
[22] I. Tavman,et al. Thermal and mechanical properties of copper powder filled poly (ethylene) composites , 1997 .
[23] Mohd Azlan Hussain,et al. Thermal conductivity prediction of fruits and vegetables using neural networks , 1999 .
[24] Susumu Nagai,et al. Thermal conductivity of a polymer composite , 1993 .
[25] Xiao Hu,et al. Thermal conductivity of polystyrene–aluminum nitride composite , 2002 .
[26] P. Pissis,et al. Electrical and thermal conductivity of polymers filled with metal powders , 2002 .
[27] O. K. Crosser,et al. Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .