Modular Complexity Analysis for Term Rewriting

All current investigations to analyze the derivational complexity of term rewrite systems are based on a single termination method, possibly preceded by transformations. However, the exclusive use of direct criteria is problematic due to their restricted power. To overcome this limitation the article introduces a modular framework which allows to infer (polynomial) upper bounds on the complexity of term rewrite systems by combining different criteria. Since the fundamental idea is based on relative rewriting, we study how matrix interpretations and match-bounds can be used and extended to measure complexity for relative rewriting, respectively. The modular framework is proved strictly more powerful than the conventional setting. Furthermore, the results have been implemented and experiments show significant gains in power.

[1]  Georg Moser,et al.  Automated Implicit Computational Complexity Analysis (System Description) , 2008, IJCAR.

[2]  S. I. Adian Upper bound on the derivational complexity in some word rewriting system , 2009 .

[3]  E. Ohlebusch On the Modularity of Confluence of Constructor-Sharing Term Rewriting Systems , 1994, CAAP.

[4]  Georg Moser,et al.  Complexity Analysis of Term Rewriting Based on Matrix and Context Dependent Interpretations , 2008, FSTTCS.

[5]  Harald Zankl,et al.  Modular Complexity Analysis via Relative Complexity , 2010, RTA.

[6]  Georg Moser,et al.  Complexity, Graphs, and the Dependency Pair Method , 2008, LPAR.

[7]  Johannes Waldmann,et al.  Arctic Termination ...Below Zero , 2008, RTA.

[8]  Thomas Genet,et al.  Decidable Approximations of Sets of Descendants and Sets of Normal Forms , 1998, RTA.

[9]  Johannes Waldmann,et al.  Polynomially Bounded Matrix Interpretations , 2010, RTA.

[10]  Aart Middeldorp,et al.  Tyrolean Termination Tool 2 , 2009, RTA.

[11]  Johannes Waldmann,et al.  Max/Plus Tree Automata for Termination of Term Rewriting , 2009, Acta Cybern..

[12]  Nao Hirokawa,et al.  Automating the Dependency Pair Method , 2005, CADE.

[13]  Harald Zankl,et al.  On Implementing Modular Complexity Analysis , 2010, IWIL@LPAR.

[14]  René Thiemann,et al.  Certification of Termination Proofs Using CeTA , 2009, TPHOLs.

[15]  Johannes Waldmann Weighted Automata for Proving Termination of String Rewriting , 2007, J. Autom. Lang. Comb..

[16]  Nao Hirokawa,et al.  Uncurrying for Innermost Termination and Derivational Complexity , 2011, HOR.

[17]  Georg Moser,et al.  Automated Complexity Analysis Based on the Dependency Pair Method , 2008, IJCAR.

[18]  Aart Middeldorp,et al.  Satisfiability of Non-linear (Ir)rational Arithmetic , 2010, LPAR.

[19]  Aart Middeldorp,et al.  Root-Labeling , 2008, RTA.

[20]  Aart Middeldorp,et al.  Revisiting Matrix Interpretations for Polynomial Derivational Complexity of Term Rewriting , 2010, LPAR.

[21]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[22]  Hans Zantema,et al.  Matrix Interpretations for Proving Termination of Term Rewriting , 2006, Journal of Automated Reasoning.

[23]  René Thiemann,et al.  The DP framework for proving termination of term rewriting , 2007 .

[24]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[25]  Hans Zantema,et al.  On tree automata that certify termination of left-linear term rewriting systems , 2005, Inf. Comput..

[26]  Dieter Hofbauer,et al.  Termination Proofs and the Length of Derivations (Preliminary Version) , 1989, RTA.

[27]  Nao Hirokawa,et al.  Tyrolean Termination Tool , 2005, RTA.

[28]  Aart Middeldorp,et al.  Proving Termination of Rewrite Systems Using Bounds , 2007, RTA.

[29]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[30]  Aart Middeldorp,et al.  Match-bounds revisited , 2009, Inf. Comput..