Submicrometer perovskite plasmonic lasers at room temperature

The beneficial plasmonic effect enables plasmonic lasing from full submicrometer–sized perovskite crystals.

[1]  Sangyeon Cho,et al.  Poly(catecholamine) Coated CsPbBr3 Perovskite Microlasers: Lasing in Water and Biofunctionalization , 2021, Advanced functional materials.

[2]  A. Zakhidov,et al.  Room-Temperature Lasing from Mie-Resonant Non-Plasmonic Nanoparticles. , 2020, ACS nano.

[3]  A. Kildishev,et al.  Ten years of spasers and plasmonic nanolasers , 2020, Light, science & applications.

[4]  R. Ma,et al.  Loss and gain in a plasmonic nanolaser , 2020 .

[5]  V. Mylnikov,et al.  Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes. , 2020, ACS nano.

[6]  S. Yun,et al.  Structure and optical properties of perovskite-embedded dual-phase microcrystals synthesized by sonochemistry , 2020, Communications Chemistry.

[7]  George C. Schatz,et al.  Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons , 2019, Nature Materials.

[8]  M. Lipson,et al.  How lasing happens in CsPbBr3 perovskite nanowires , 2019, Nature Communications.

[9]  Rupert F. Oulton,et al.  Applications of nanolasers , 2018, Nature Nanotechnology.

[10]  R. Ma,et al.  High Performance Plasmonic Nanolasers with External Quantum Efficiency Exceeding 10. , 2018, Nano letters.

[11]  Yizheng Jin,et al.  Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures , 2018, Nature.

[12]  J. Hodgkiss,et al.  Using Bulk-like Nanocrystals To Probe Intrinsic Optical Gain Characteristics of Inorganic Lead Halide Perovskites. , 2018, ACS nano.

[13]  M. Gather,et al.  Non-obstructive intracellular nanolasers , 2018, Nature Communications.

[14]  Ayan A. Zhumekenov,et al.  Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides , 2018 .

[15]  M. B. H. Breese,et al.  Importance of Electronic Correlations and Unusual Excitonic Effects in Formamidinium Lead Halide Perovskites , 2018 .

[16]  S. Xiao,et al.  Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate. , 2018, ACS nano.

[17]  Pierre Berini,et al.  Single-mode surface plasmon distributed feedback lasers. , 2018, Nanoscale.

[18]  Tyler J S Evans,et al.  Competition Between Hot-Electron Cooling and Large Polaron Screening in CsPbBr3 Perovskite Single Crystals , 2018 .

[19]  Jay B. Patel,et al.  Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process , 2018, Nature Communications.

[20]  R. Oulton,et al.  Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit , 2017, Nature Communications.

[21]  Vladimir M. Shalaev,et al.  Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers , 2017 .

[22]  Xiaoyang Zhu,et al.  Large polarons in lead halide perovskites , 2017, Science Advances.

[23]  J. Grossman,et al.  Ultralow thermal conductivity in all-inorganic halide perovskites , 2017, Proceedings of the National Academy of Sciences.

[24]  Noah D Bronstein,et al.  Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. , 2017, Journal of the American Chemical Society.

[25]  M. Soljačić,et al.  Low-Loss Plasmonic Dielectric Nanoresonators. , 2016, Nano letters.

[26]  S. Yun,et al.  Laser Particle Stimulated Emission Microscopy. , 2016, Physical review letters.

[27]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[28]  P. Ghosh,et al.  Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. , 2016, Nano letters.

[29]  Francisco J. Garcia-Vidal,et al.  Plasmon exciton-polariton lasing , 2016, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[30]  Hao Xie,et al.  Mirror-enhanced super-resolution microscopy , 2016, Light: Science & Applications.

[31]  C. Lin,et al.  High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum. , 2016, Nano letters.

[32]  Huijun Zhao,et al.  Functionalization of perovskite thin films with moisture-tolerant molecules , 2016, Nature Energy.

[33]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[34]  Nripan Mathews,et al.  Charge Accumulation and Hysteresis in Perovskite‐Based Solar Cells: An Electro‐Optical Analysis , 2015 .

[35]  Seok Hyun Yun,et al.  Intracellular microlasers , 2015, Nature Photonics.

[36]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[37]  T. Heinz,et al.  Population inversion and giant bandgap renormalization in atomically thin WS2 layers , 2015, Nature Photonics.

[38]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[39]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[40]  Giovanni Bongiovanni,et al.  Correlated electron–hole plasma in organometal perovskites , 2014, Nature Communications.

[41]  Stefan A. Maier,et al.  Ultrafast plasmonic nanowire lasers near the surface plasmon frequency , 2014, Nature Physics.

[42]  Guangyuan Li,et al.  A room temperature low-threshold ultraviolet plasmonic nanolaser , 2014, Nature Communications.

[43]  Kurt Busch,et al.  Limitations of Particle-Based Spasers. , 2014, Physical review letters.

[44]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[45]  A. Kildishev,et al.  Wavelength-tunable spasing in the visible. , 2013, Nano letters.

[46]  N. Tansu,et al.  Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates , 2013, IEEE Photonics Journal.

[47]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[48]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[49]  G. Bartal,et al.  Room temperature sub-diffraction-limited plasmon laser by total internal reflection , 2012 .

[50]  E. Haller,et al.  Ultra-low Threshold electrically pumped quantum dot photonic crystal nanocavity laser , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[51]  P. Chaumet,et al.  Isotropic diffraction-limited focusing using a single objective lens. , 2010, Physical review letters.

[52]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[53]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[54]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[55]  Axel Scherer,et al.  Visible submicron microdisk lasers , 2007 .

[56]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[57]  Gregor Weihs,et al.  Polariton lasing vs. photon lasing in a semiconductor microcavity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[59]  Douglas Magde,et al.  Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields¶ , 2002, Photochemistry and photobiology.

[60]  P. Seybold,et al.  Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields ¶ , 2002 .

[61]  F. Courvoisier,et al.  Multimode resonances in square-shaped optical microcavities. , 2001, Optics letters.

[62]  Frank H. Stillinger,et al.  Bound states in the continuum , 1975 .

[63]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .

[64]  Oleksandr Voznyy,et al.  Perovskite Thin Films via Atomic Layer Deposition , 2015, Advanced materials.

[65]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[66]  Stefan Schmitt-Rink,et al.  Electron theory of the optical properties of laser-excited semiconductors , 1984 .

[67]  A. Lytel Introduction to lasers and masers , 1966 .

[68]  Koji Fujita,et al.  Wavelength-tunable Spasing in the Visible , 2022 .

[69]  A. Freeman AIR FORCE OFFICE OF SCIENTIFIC RESEARCH , 2022 .