Orbital character and electron correlation effects on two- and three-dimensional Fermi surfaces in KFe2As2 revealed by angle-resolved photoemission spectroscopy

We have investigated orbital character and electron correlation effects on Fermi surfaces in the hole-overdoped iron pnictide superconductor KFe2As2, which shows a low Tc of ~4 K, by angle-resolved photoemission spectroscopy. From the polarization-dependence of the ARPES spectra, we have determined the orbital character of each Fermi surface. Electron mass renormalization of each band is quantitatively consistent with de Haas-van Alphen results. The outer beta and middle zeta Fermi surfaces show large renormalization factor of m*/mb ~6-7, while the inner Fermi surface has a smaller factor m*/mb ~2. Middle hole Fermi surface zeta has strong three-dimensionality compared to other Fermi surfaces, indicating the d3z2-r2 orbital character, which may be related to the "octet-line nodes" recently observed by laser ARPES. The observed orbital-dependent mass renormalization would give constraints on the pairing mechanism with line nodes of this system.

[1]  Kwang Soo Kim,et al.  Orbital Selective Fermi Surface Shifts in Correlated AFeAs (A = Li, Na) , 2015 .

[2]  L. Taillefer,et al.  Field dependence of thermal conductivity in the iron-based superconductor KFe$_{2}$As$_{2}$: Evidence of a $d$-wave state , 2015 .

[3]  T. Qian,et al.  Possible nodal superconducting gap emerging at the Lifshitz transition in heavily hole-doped Ba0.1K0.9Fe2As2 , 2013, 1308.3888.

[4]  M. Imai,et al.  Fermi surface in KFe2As2determined via de Haas–van Alphen oscillation measurements , 2013, 1304.6469.

[5]  G. Kotliar,et al.  Evidence of strong correlations and coherence-incoherence crossover in the iron pnictide superconductor KFe2As2. , 2013, Physical review letters.

[6]  J.,et al.  Orbital characters of bands in the iron-based superconductor BaFe_{1.85}Co_{0.15}As_{2} , 2013 .

[7]  K. Okazaki Octet‐Line Node Structure of Superconducting Order Parameter in KFe2As2. , 2012 .

[8]  H. Eisaki,et al.  Abrupt change in the energy gap of superconducting Ba 1-x K x Fe 2 As 2 single crystals with hole doping , 2012, 1204.0326.

[9]  Ching Hua Lee,et al.  Universal heat conduction in the iron arsenide superconductor KFe2As2: evidence of a d-wave state. , 2012, Physical review letters.

[10]  K. Kuroki,et al.  Spin fluctuations and unconventional pairing in KFe2As2 , 2011, 1108.0657.

[11]  E. M. Forgan,et al.  Gap in KFe 2 As 2 studied by small-angle neutron scattering observations of the magnetic vortex lattice , 2011 .

[12]  R. Arita,et al.  Angle-resolved photoemission spectroscopy study of PrFeAsO0.7: Comparison with LaFePO , 2011 .

[13]  T. Togashi,et al.  Orbital-Independent Superconducting Gaps in Iron Pnictides , 2011, Science.

[14]  G. Kotliar,et al.  Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. , 2011, Nature materials.

[15]  R. Arita,et al.  Two-dimensional and three-dimensional Fermi surfaces of superconducting BaFe2(As(1-x)P(x))2 and their nesting properties revealed by angle-resolved photoemission spectroscopy. , 2011, Physical review letters.

[16]  K. Kuroki,et al.  Possible Three-Dimensional Nodes in the s± Superconducting Gap of BaFe2(As1-xPx)2 , 2010, 1010.3542.

[17]  A. Fujimori,et al.  Fermi surfaces and quasi-particle band dispersions of the iron pnictides superconductor KFe2As2 observed by angle-resolved photoemission spectroscopy , 2010, 1007.2698.

[18]  X. H. Chen,et al.  Orbital characters of bands in the iron-based superconductor BaFe1.85Co0.15As2 , 2009, 0904.4022.

[19]  R. Arita,et al.  Pnictogen height as a switch between high-Tc nodeless and low-Tc nodal pairings in the iron-based superconductors , 2010 .

[20]  M. Imai,et al.  Quasi-Two-Dimensional Fermi Surfaces and Coherent Interlayer Transport in KFe 2 As 2 , 2010, 1011.2056.

[21]  K. Hashimoto,et al.  Line nodes in the energy gap of superconducting BaFe2(As1-xPx)2 single crystals as seen via penetration depth and thermal conductivity , 2010 .

[22]  L. Taillefer,et al.  Nodes in the gap structure of the iron arsenide superconductor Ba ( Fe 1 − x Co x ) 2 As 2 from c -axis heat transport measurements , 2010, 1004.3804.

[23]  Ching Hua Lee,et al.  Evidence for superconducting gap nodes in the zone-centered hole bands of KFe2As2 from magnetic penetration-depth measurements , 2010, 1003.6022.

[24]  H.-P. Cheng,et al.  Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2 , 2010, 1003.0133.

[25]  M. Imai,et al.  Fermi Surface and Mass Enhancement in KFe2As2 from de Haas-van Alphen Effect Measurements , 2010, 1001.3441.

[26]  R. Arita,et al.  Phase diagram and gap anisotropy in iron-pnictide superconductors , 2009, 0912.1893.

[27]  S. Y. Li,et al.  Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2. , 2009, Physical review letters.

[28]  H. Eisaki,et al.  Possible Multiple Gap Superconductivity with Line Nodes in Heavily Hole-Doped Superconductor KFe2As2 Studied by 75As Nuclear Quadrupole Resonance and Specific Heat , 2009, 0906.4644.

[29]  R. Arita,et al.  Three-Dimensional Electronic Structure of Superconducting Iron Pnictides Observed by Angle-Resolved Photoemission Spectroscopy , 2009, 0906.1846.

[30]  David J. Singh,et al.  Evidence for three-dimensional Fermi-surface topology of the layered electron-doped iron superconductor Ba(Fe 1-x Co x ) 2 As 2 , 2009 .

[31]  V. Zabolotnyy (π,π) Electronic Order in Iron Arsenide Superconductors. , 2009 .

[32]  Jian-lin Luo,et al.  Resistivity and upper critical field in KFe$_2$As$_2$ single crystals , 2009, 0903.3783.

[33]  Nan Wang,et al.  Band structure and fermi surface of an extremely overdoped iron-based superconductor KFe2As2. , 2008, Physical review letters.

[34]  X. Dai,et al.  Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 , 2008, 0807.0419.

[35]  S. Rózsa,et al.  CRYSTAL STRUCTURE OF KFE2AS2, KCO2AS2, KRH2AS2 AND KRH2P2 , 1982 .

[36]  S. Rózsa,et al.  Zur Struktur von KFe2As2, KCo2As2, KRh2As / Crystal Structure of KFe2As2, KCo2As2, KRh2As 2 and KRh2P2 , 1981 .