Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874

A lack of understanding of the quantitative rhamnolipid production regulation in bioreactor cultivations of Pseudomonas aeruginosa and the absence of respective comparative studies are important reasons for achieving insufficient productivities for an economic production of these biosurfactants. The Pseudomonas strains DSM 7108 and DSM 2874 are described to be good rhamnolipid over-producers. The strain PAO1 on the other hand is the best analyzed type strain for genetic regulation mechanisms in the species P. aeruginosa. These three strains were cultivated in a 30-L bioreactor with a medium containing nitrate and sunflower oil as sole C-source at 30 and 37 °C. The achieved maximum rhamnolipid concentrations varied from 7 to 38 g/L, the volumetric productivities from 0.16 to 0.43 g/(L·h), and the cellular yield from 0.67 to 3.15 g/g, with PAO1 showing the highest results for all of these variables. The molar di- to mono-rhamnolipid ratio changed during the cultivations; it was strain dependent but not significantly influenced by the temperature. This study explicitly shows that the specific rhamnolipid synthesis rate per cell follows secondary metabolite-like courses coinciding with the transition to the stationary phase of typical logistic growth behavior. However, the rhamnolipid synthesis was already induced before N-limitation occurred.

[1]  M. Karnovsky,et al.  Rhamnose and rhamnolipide biosynthesis by Pseudomonas aeruginosa. , 1957, The Journal of biological chemistry.

[2]  G. Bertani,et al.  STUDIES ON LYSOGENESIS I , 1951, Journal of bacteriology.

[3]  V. Wray,et al.  Purification and Characterization of a Cytotoxic Exolipid of Burkholderia pseudomallei , 1998, Infection and Immunity.

[4]  F. Lépine,et al.  Rhamnolipids: diversity of structures, microbial origins and roles , 2010, Applied Microbiology and Biotechnology.

[5]  I. Banat,et al.  Rhamnolipid Biosurfactant Production by Strains of Pseudomonas aeruginosa Using Low‐Cost Raw Materials , 2002, Biotechnology progress.

[6]  C. Mulligan,et al.  The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa , 1989 .

[7]  Markus Michael Müller,et al.  Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems , 2010, Applied Microbiology and Biotechnology.

[8]  K. Juárez,et al.  Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. , 2003, Microbiology.

[9]  J. Guinea,et al.  Kinetic studies on surfactant production byPseudomonas aeruginosa 44T1 , 1991, Journal of Industrial Microbiology.

[10]  J. Reiser,et al.  Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[11]  C. Mulligan,et al.  Biosurfactant production by a chloramphenicol tolerant strain of Pseudomonas aeruginosa , 1989 .

[12]  C. Syldatk,et al.  Production of Four Interfacial Active Rhamnolipids from n-Alkanes or Glycerol by Resting Cells of Pseudomonas species DSM 2874 , 1985, Zeitschrift fur Naturforschung. Section C, Biosciences.

[13]  M. Karnovsky,et al.  Studies on the biosynthesis of L-rhammose. , 1958, The Journal of biological chemistry.

[14]  B. Schmidt,et al.  High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. , 1995, Journal of chromatography. A.

[15]  R. Linhardt,et al.  Microbially produced rhamnolipid as a source of rhamnose. , 1989, Biotechnology and bioengineering.

[16]  A. S. Bal,et al.  Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes , 1996, Biotechnology Letters.

[17]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[18]  H. Unno,et al.  Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa , 2008, Applied Microbiology and Biotechnology.

[19]  Christoph Syldatk,et al.  Chemical and Physical Characterization of Four Interfacial-Active Rhamnolipids from Pseudomonas spec. DSM 2874 Grown on n-Alkanes , 1985, Zeitschrift fur Naturforschung. Section C, Biosciences.

[20]  Jo‐Shu Chang,et al.  Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater , 2005 .

[21]  O. Erkmen,et al.  Mathematical modeling of citric acid production and biomass formation by Aspergillus niger in undersized semolina , 2002 .

[22]  Frank Paul Leitermann Entwicklung und Optimierung eines biotechnologischen Prozesses zur Herstellung mikrobieller Rhamnolipide auf Basis nachwachsender Rohstoffe , 2008 .

[23]  A Fiechter,et al.  Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source , 1984, Applied and environmental microbiology.

[24]  C. G. Koster,et al.  Structure identification of natural rhamnolipid mixtures by fast atom bombardment tandem mass spectrometry , 1993, Glycoconjugate Journal.

[25]  M. Eberlin,et al.  Oil Wastes as Unconventional Substrates for Rhamnolipid Biosurfactant Production by Pseudomonas aeruginosa LBI , 2005, Biotechnology progress.

[26]  R. Hancock,et al.  Outer membrane of Pseudomonas aeruginosa: heat- 2-mercaptoethanol-modifiable proteins , 1979, Journal of bacteriology.

[27]  Christoph Syldatk,et al.  Rhamnolipid production by Burkholderia plantarii DSM 9509T , 2010 .

[28]  B. Iglewski,et al.  Starvation Selection Restores Elastase and Rhamnolipid Production in a Pseudomonas aeruginosaQuorum-Sensing Mutant , 1998, Infection and Immunity.

[29]  Donald E Woods,et al.  Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids , 2009, BMC Microbiology.

[30]  F. Lépine,et al.  Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. , 2000, Biochimica et biophysica acta.

[31]  C. Olvera,et al.  Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di‐rhamnolipid biosynthesis , 2001, Molecular microbiology.

[32]  F. G. Jarvis,et al.  A Glyco-lipide Produced by Pseudomonas Aeruginosa , 1949 .

[33]  C. Syldatk,et al.  An integrated microbial/enzymatic process for production of rhamnolipids and L‐(+)‐rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874 , 2003 .

[34]  F. Lépine,et al.  Production of rhamnolipids by Pseudomonas aeruginosa , 2005, Applied Microbiology and Biotechnology.

[35]  R. Marchal,et al.  Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species , 1996, Applied Microbiology and Biotechnology.

[36]  N. Karanth,et al.  A mathematical model for the production of biosurfactants by Pseudomonas aeuginosa CFTR‐6: Production of biomass , 2007 .

[37]  N. Karanth,et al.  Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR‐6 under submerged conditions , 2007 .

[38]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[39]  L. Glaser,et al.  THE ENZYMATIC SYNTHESIS OF A RHAMNOSE-CONTAINING GLYCOLIPID BY EXTRACTS OF PSEUDOMONAS AERUGINOSA. , 1963, The Journal of biological chemistry.

[40]  F. Rombouts,et al.  Modeling of the Bacterial Growth Curve , 1990, Applied and environmental microbiology.

[41]  M. P. Bosch,et al.  Effect of the carbon source on biosurfactant production byPseudomonas aeruginosa 44T1 , 1989, Biotechnology Letters.