Characteristics of modified nanopyramid silicon solar cell

In this paper, a modified nanopyramid solar cell (SC) is introduced and numerically analyzed. The finite difference time domain (FDTD) method is used for computing the optical efficiency of the suggested design. The modified nanopyramid SC consists of an upper tapered nanopyramid part and lower nano-rectangular unit. The geometrical parameters of the proposed design are studied to maximize the optical absorption and hence the ultimate efficiency of the reported SC. The modified structure provides an optical ultimate efficiency and short circuit current density (Jsc) of 39.6 % and 32.4 mA/cm2 with improvement of 24.1% and 22.2 %, respectively over the conventional thin film (TF) nanopyramid SC. Further, the p-i-n axial junctions of the suggested SC exhibits open circuit voltage (Voc) of 0.57 volt, JSC of 28.42 mA/cm2 and power conversion efficiency (PCE) of 13.3% which are better than 0.559 volt, 19.6 mA/cm2 and 8.95%, respectively of the conventional nanopyramid TF-SC. This enhancement is mainly attributed to the combination between higher order modes generated by lower rectangle unit with lower order modes supported by the upper tapered nanopyramid.

[1]  M. B. Khan,et al.  Towards athermal organic-inorganic guided mode resonance filters. , 2011, Optics express.

[2]  W. Marsden I and J , 2012 .

[3]  Mohamed A. Swillam,et al.  Effective modelling of silicon nanowire solar cells , 2017, 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES).

[4]  Mohamed Farhat O. Hameed,et al.  Optoelectronic performance of a modified nanopyramid solar cell , 2019, Journal of the Optical Society of America B.

[5]  Mohamed A. Swillam,et al.  Electrical characteristics of silicon nanowires solar cells with surface roughness , 2018, OPTO.

[6]  S. S. Wang,et al.  Theory and applications of guided-mode resonance filters. , 1993, Applied optics.

[7]  Mehrdad Shokooh-Saremi,et al.  UV and IR cut-off filters based on plasmonic crossed-shaped nano-antennas for solar cell applications , 2019, Optics Communications.

[8]  Gang Chen,et al.  Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. , 2012, Nano letters.

[9]  C. Soukoulis,et al.  Electromagnetic waves: Negative refraction by photonic crystals , 2003, Nature.

[10]  Mohamed Farhat O. Hameed,et al.  Design of flower-shaped dipole nano-antenna for energy harvesting , 2014 .

[11]  Mohamed Farhat O. Hameed,et al.  Optical Nano-Antennas for Energy Harvesting , 2015 .

[12]  Zeyong Wei,et al.  Negative reflection from metal/graphene plasmonic gratings. , 2016, Optics letters.

[13]  Murat Okandan,et al.  Microsystems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell , 2011 .

[14]  Xing Fang,et al.  Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications , 2014 .

[15]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[16]  Korany R. Mahmoud,et al.  Super directive Yagi-Uda nanoantennas with an ellipsoid reflector for optimal radiation emission , 2017 .

[17]  Jenq-Yang Chang,et al.  Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings. , 2008, Optics express.

[18]  Jing Ma,et al.  Nanopyramids and rear-located Ag nanoparticles for broad spectrum absorption enhancement in thin-film solar cells. , 2014, Optics express.

[19]  Qiang Cheng,et al.  Optical properties of a grating-nanorod assembly structure for solar cells , 2016 .

[20]  Xiaofeng Li,et al.  Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres. , 2016, Optics letters.

[21]  Robert Magnusson,et al.  Light management through guided-mode resonances in thin-film silicon solar cells , 2014 .

[22]  M. Hussein,et al.  Funnel-shaped silicon nanowire for highly efficient light trapping. , 2016, Optics letters.

[23]  Deyan He,et al.  Excellent Light Confinement of Hemiellipsoid- and Inverted Hemiellipsoid-Modified Semiconductor Nanowire Arrays , 2018, Nanoscale Research Letters.

[24]  Mohamed Farhat O. Hameed,et al.  Hybrid core semiconductor nanowires for solar cell applications , 2014, Numerical Simulation of Optoelectronic Devices, 2014.

[25]  Fuhua Yang,et al.  High-efficiency photon capturing in ultrathin silicon solar cells with double-sided skewed nanopyramid arrays , 2017 .

[26]  Honglie Shen,et al.  Superiority of random inverted nanopyramid as efficient light trapping structure in ultrathin flexible c-Si solar cell , 2019, Renewable Energy.

[27]  Edmond Cambril,et al.  Study of the resonant behavior of waveguide-gratings Increasing the angular tolerance of guided-mode filters , 1999, Diffractive Optics and Micro-Optics.

[28]  Paul Steinvurzel,et al.  Multicolored vertical silicon nanowires. , 2011, Nano letters.

[29]  J. Rogers,et al.  Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides. , 2011, Nature communications.

[30]  Hoi Sing Kwok,et al.  Nanopyramid structure for ultrathin c-Si tandem solar cells. , 2014, Nano letters.

[31]  Mohamed Farhat O. Hameed,et al.  Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications , 2018, Plasmonics.

[32]  Muhammad Saleem,et al.  Improved absorption efficiency of silicon (Si) solar cells through Resonant Waveguide Gratings (RWGs) - A hybrid design of RWG and Si solar cell , 2017 .

[33]  Mohamed Hussein,et al.  Electrical characteristics of funnel-shaped silicon nanowire solar cells , 2017 .

[34]  Mohamed Hussein,et al.  Characteristics of highly efficient star-shaped nanowires solar cell , 2018, Journal of Photonics for Energy.

[35]  Mohamed Farhat O. Hameed,et al.  Design considerations of super-directive nanoantennas for core-shell nanowires , 2018 .

[36]  Korany R. Mahmoud,et al.  Optimal design of vertical silicon nanowires solar cell using hybrid optimization algorithm , 2017 .

[37]  Wei Zhou,et al.  Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering. , 2018, Nano letters.

[38]  Mohamed Hussein,et al.  Conical structures for highly efficient solar cell applications , 2018 .