Efficient Entropy Stable Gauss Collocation Methods

The construction of high order entropy stable collocation schemes on quadrilateral and hexahedral elements has relied on the use of Gauss-Legendre-Lobatto collocation points and their equivalence with summation-by-parts (SBP) finite difference operators. In this work, we show how to efficiently generalize the construction of semi-discretely entropy stable schemes on tensor product elements to Gauss points and generalized SBP operators. Numerical experiments suggest that the use of Gauss points significantly improves accuracy on curved meshes.

[1]  Axel Modave,et al.  GPU-accelerated discontinuous Galerkin methods on hybrid meshes , 2015, J. Comput. Phys..

[2]  Sigrun Ortleb Kinetic energy preserving DG schemes based on summation-by-parts operators on interior node distributions: DGKEP on interior nodes , 2016 .

[3]  Gregor Gassner,et al.  A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations , 2017, J. Comput. Phys..

[4]  Steven H. Frankel,et al.  Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces , 2014, SIAM J. Sci. Comput..

[5]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[6]  Travis C. Fisher,et al.  High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains , 2013, J. Comput. Phys..

[7]  David C. Del Rey Fernández,et al.  Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .

[8]  Sigrun Ortleb A Kinetic Energy Preserving DG Scheme Based on Gauss–Legendre Points , 2017, J. Sci. Comput..

[9]  Jesse Chan,et al.  On discretely entropy conservative and entropy stable discontinuous Galerkin methods , 2017, J. Comput. Phys..

[10]  Gregor Gassner,et al.  Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations , 2016, J. Comput. Phys..

[11]  David C. Del Rey Fernández,et al.  Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements , 2018, J. Comput. Phys..

[12]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[13]  David C. Del Rey Fernández,et al.  A generalized framework for nodal first derivative summation-by-parts operators , 2014, J. Comput. Phys..

[14]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[15]  Matteo Parsani,et al.  Entropy Stable Staggered Grid Discontinuous Spectral Collocation Methods of any Order for the Compressible Navier-Stokes Equations , 2016, SIAM J. Sci. Comput..

[16]  David C. Del Rey Fernández,et al.  High-Order , Entropy-Stable Discretizations of the Euler Equations for Complex Geometries , 2017 .

[17]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[18]  Gregor Gassner,et al.  Entropy Stable Space–Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws , 2018, J. Sci. Comput..

[19]  M. Lenoir Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .

[20]  Chi-Wang Shu,et al.  Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws , 2017, J. Comput. Phys..

[21]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[22]  Hendrik Ranocha,et al.  Generalised summation-by-parts operators and variable coefficients , 2017, J. Comput. Phys..

[23]  Jan Nordström,et al.  Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation , 2006, J. Sci. Comput..

[24]  Gregor Gassner,et al.  Geometry effects in nodal discontinuous Galerkin methods on curved elements that are provably stable , 2016, Appl. Math. Comput..

[25]  Gregor Gassner,et al.  The BR1 Scheme is Stable for the Compressible Navier–Stokes Equations , 2017, J. Sci. Comput..

[26]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[27]  Antony Jameson,et al.  Nodal Points and the Nonlinear Stability of High-Order Methods for Unsteady Flow Problems on Tetrahedral Meshes , 2013 .

[28]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..

[29]  Claus-Dieter Munz,et al.  Explicit Discontinuous Galerkin methods for unsteady problems , 2012 .

[30]  Gregor Gassner,et al.  On the Quadrature and Weak Form Choices in Collocation Type Discontinuous Galerkin Spectral Element Methods , 2010, J. Sci. Comput..

[31]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[32]  David A. Kopriva,et al.  Metric Identities and the Discontinuous Spectral Element Method on Curvilinear Meshes , 2006, J. Sci. Comput..

[33]  Timothy C. Warburton,et al.  An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs , 2018, J. Comput. Phys..

[34]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[35]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[36]  Jesse Chan,et al.  Discretely entropy stable weight-adjusted discontinuous Galerkin methods on curvilinear meshes , 2018, 1805.10934.

[37]  Timothy C. Warburton,et al.  A Low-Storage Curvilinear Discontinuous Galerkin Method for Wave Problems , 2013, SIAM J. Sci. Comput..

[38]  Eitan Tadmor,et al.  Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[39]  Praveen Chandrashekar,et al.  Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations , 2012, ArXiv.

[40]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[41]  David C. Del Rey Fernández,et al.  Simultaneous Approximation Terms for Multi-dimensional Summation-by-Parts Operators , 2016, J. Sci. Comput..

[42]  Magnus Svärd,et al.  Entropy-Stable Schemes for the Euler Equations with Far-Field and Wall Boundary Conditions , 2014, J. Sci. Comput..