Methods for Proving Completeness via Logical Reductions

Abstract In this paper we illustrate five different techniques for showing that problems are complete for some complexity class via projection translations (these are extremely weak logical reductions). These techniques would not be available to us if we were to take the traditional view of complexity theory where decision problems are equated with sets of strings instead of sets of finite structures.

[1]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[2]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[3]  Walter J. Savitch,et al.  Maze Recognizing Automata and Nondeterministic Tape Complexity , 1973, J. Comput. Syst. Sci..

[4]  Iain A. Stewart,et al.  Logical Characterizations of Bounded Query Classes II: Polynomial-Time Oracle Machines , 1992, Fundam. Informaticae.

[5]  Christoph Meinel,et al.  Polynomial Size Omega-Branching Programs and Their Computational Power , 1990, Inf. Comput..

[6]  Neil Immerman,et al.  The complexity of iterated multiplication , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[7]  Neil Immerman,et al.  Descriptive and Computational Complexity , 1989, FCT.

[8]  Elias Dahlhaus,et al.  Reduction to NP-complete problems by interpretations , 1983, Logic and Machines.

[9]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[10]  Iain A. Stewart,et al.  Using the Hamiltonian Path Operator to Capture NP , 1990, J. Comput. Syst. Sci..

[11]  Iain A. Stewart Refining known Results on the generalized Word Problem for Free Groups , 1992, Int. J. Algebra Comput..

[12]  Iain A. Stewart Complete Problems Involving Boolean Labelled Structures and Projection Transactions , 1991, J. Log. Comput..

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  László Lovász,et al.  Some Remarks on Generalized Spectra , 1977, Math. Log. Q..

[15]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[16]  Ronald L. Rivest,et al.  The subgraph homeomorphism problem , 1978, STOC.

[17]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[18]  Klaus W. Wagner,et al.  Bounded query computations , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[19]  Iain A. Stewart,et al.  Logical Characterizations of Bounded Query Classes I: Logspace Oracle Machines , 1992, Fundam. Informaticae.

[20]  Iain A. Stewart On Completeness for NP via Projection Translations , 1991, CSL.

[21]  Iain A. Stewart Copmlete Problems for Logspace Involving Lexicographic First Paths in Graphs , 1991, WG.

[22]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[23]  Iain A. Stewart,et al.  Comparing the Expressibility of Languages Formed using NP-Complete Operators , 1991, J. Log. Comput..

[24]  Leslie G. Valiant,et al.  A complexity theory based on Boolean algebra , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[25]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[26]  Leon J. Osterweil,et al.  On Two Problems in the Generation of Program Test Paths , 1976, IEEE Transactions on Software Engineering.

[27]  Christos H. Papadimitriou,et al.  Symmetric Space-Bounded Computation , 1982, Theor. Comput. Sci..

[28]  Iain A. Stewart Complete Problems for Symmetric Logspace Involving Free Groups , 1991, Inf. Process. Lett..

[29]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..