Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples.

[1]  G. Rivas,et al.  Amperometric determination of dopamine on an enzymatically modified carbon paste electrode , 1995 .

[2]  Y. Hasebe,et al.  Determination of catecholamines and uric acid in biological fluids without pretreatment, using chemically amplified biosensors , 1995 .

[3]  S. Cosnier,et al.  An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate. , 1997, Analytical chemistry.

[4]  Chuan-sin Cha,et al.  Detection of dopamine in the presence of a large excess of ascorbic acid by using the powder microelectrode technique , 1999 .

[5]  J. Li,et al.  Determination of morphine by capillary electrophoresis immunoassay in thermally reversible hydrogel-modified buffer and laser-induced fluorescence detection. , 2000, Journal of chromatography. A.

[6]  Q. C. Meng,et al.  High-performance liquid chromatographic determination of morphine and its 3- and 6-glucuronide metabolites by two-step solid-phase extraction. , 2000, Journal of chromatography. B, Biomedical sciences and applications.

[7]  W. Thormann,et al.  Capillary electrophoresis-electrospray ionization ion trap mass spectrometry for analysis and confirmation testing of morphine and related compounds in urine. , 2001, Journal of chromatography. A.

[8]  K. Róna,et al.  LC determination of morphine and morphine glucuronides in human plasma by coulometric and UV detection. , 2001, Journal of pharmaceutical and biomedical analysis.

[9]  Prem C. Pandey,et al.  A novel ferrocene encapsulated palladium-linked ormosil-based electrocatalytic dopamine biosensor , 2001 .

[10]  Silvia Fabiano,et al.  Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. , 2003, Talanta.

[11]  T. Ohsaka,et al.  Gold nanoparticle arrays for the voltammetric sensing of dopamine , 2003 .

[12]  T. Glass,et al.  Selective amine recognition: development of a chemosensor for dopamine and norepinephrine. , 2004, Organic letters.

[13]  H. Ichinose,et al.  Molecular Biology of Catecholamine-Related Enzymes in Relation to Parkinson's Disease , 1999, Cellular and Molecular Neurobiology.

[14]  Liping Jiang,et al.  A Chitosan-Multiwall Carbon Nanotube Modified Electrode for Simultaneous Detection of Dopamine and Ascorbic Acid , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[15]  Ana S. Viana,et al.  N-Hydroxysuccinimide-terminated self-assembled monolayers on gold for biomolecules immobilisation , 2005 .

[16]  J. Kennedy,et al.  Effect of ultrasonic treatment on the biochemphysical properties of chitosan , 2006 .

[17]  M. Rinaudo,et al.  Chitin and chitosan: Properties and applications , 2006 .

[18]  M. Karve,et al.  Development of electrochemical biosensor based on tyrosinase immobilized in composite biopolymeric film. , 2006, Analytical biochemistry.

[19]  Wen-Li Jia,et al.  Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. , 2006, Biosensors & bioelectronics.

[20]  Shen-Ming Chen,et al.  Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes , 2006 .

[21]  M. Ozaki,et al.  Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties , 2007 .

[22]  Yanxiu Zhou,et al.  Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode. , 2007, Biosensors & bioelectronics.

[23]  Y. Tsai,et al.  Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds , 2007 .

[24]  J. Kennedy,et al.  Hydration energy of the 1,4-bonds of chitosan and their breakdown by ultrasonic treatment , 2007 .

[25]  Silvana Andreescu,et al.  Mixed ceria-based metal oxides biosensor for operation in oxygen restrictive environments. , 2008, Analytical chemistry.

[26]  M. Karve,et al.  Glutaraldehyde activated eggshell membrane for immobilization of tyrosinase from Amorphophallus companulatus: application in construction of electrochemical biosensor for dopamine. , 2008, Analytica chimica acta.

[27]  Young Je Yoo,et al.  Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode. , 2009, Talanta.

[28]  S. Yao,et al.  Preparation of chitosan–dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH , 2009 .

[29]  S. Andreescu,et al.  Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. , 2010, Analytical chemistry.

[30]  윤창훈,et al.  Multi walled carbon nanotube 의 분산 선택성에 따른 PCABS MWCNT 복합체의 모폴로지 및 전기적 유변학적 물성에 관한 연구 , 2010 .

[31]  Yan Wang,et al.  Detection of Dopamine Based on Tyrosinase-Fe3O4 Nanoparticles-chitosan Nanocomposite Biosensor , 2010 .

[32]  Dongxue Han,et al.  Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan‐Graphene Modified Electrode , 2010 .

[33]  Huafeng Yang,et al.  Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. , 2010, Biosensors & bioelectronics.

[34]  S. Timur,et al.  Chitosan matrices modified with carbon nanotubes for use in mediated microbial biosensing , 2011 .

[35]  P. Krysiński,et al.  Selective detection of dopamine on poly(indole-5-carboxylic acid)/tyrosinase electrode , 2011 .

[36]  S. Ai,et al.  Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid , 2011 .

[37]  M. Afrasiabi,et al.  A Sensor for Simultaneous Determination of Acetaminophen and Codeine at Glassy Carbon Electrode Modified with Multi-Walled Carbon Nanotubes , 2012 .

[38]  Xiuli Niu,et al.  A novel and simple strategy for simultaneous determination of dopamine, uric acid and ascorbic acid based on the stacked graphene platelet nanofibers/ionic liquids/chitosan modified electrode. , 2012, Talanta.

[39]  B. Liu,et al.  Dopamine molecularly imprinted electrochemical sensor based on graphene–chitosan composite , 2012 .

[40]  Krystyna Jackowska,et al.  New trends in the electrochemical sensing of dopamine , 2012, Analytical and Bioanalytical Chemistry.

[41]  Constantin Apetrei,et al.  AMPEROMETRIC TYROSINASE BASED BIOSENSORS FOR SEROTONIN DETECTION , 2013 .

[42]  M. Finel,et al.  Determination of Serotonin and Dopamine Metabolites in Human Brain Microdialysis and Cerebrospinal Fluid Samples by UPLC-MS/MS: Discovery of Intact Glucuronide and Sulfate Conjugates , 2013, PloS one.

[43]  D. A. Brownson,et al.  Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite. , 2013, The Analyst.

[44]  Jianrong Chen,et al.  Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films. , 2013, Talanta.

[45]  P. He,et al.  Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode , 2013 .

[46]  R. Dimova,et al.  Insights on the interactions of chitosan with phospholipid vesicles. Part I: Effect of polymer deprotonation. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[47]  Nehru Marg,et al.  Synthesis and characterization of graphite doped chitosan composite for batch adsorption of lead (II) ions from aqueous solution , 2014 .

[48]  Ludwika Lipinska,et al.  Production of graphene composite by direct graphite exfoliation with chitosan , 2014 .

[49]  Hyo Sung Jung,et al.  Chemical sensing of neurotransmitters. , 2014, Chemical Society reviews.

[50]  Jing Zhang,et al.  One-pot synthesis of graphene-chitosan nanocomposite modified carbon paste electrode for selective determination of dopamine , 2014 .

[51]  F. S. Omar,et al.  Graphene and its nanocomposite material based electrochemical sensor platform for dopamine , 2014 .

[52]  Jong Seung Kim,et al.  Some General Design Principles and Photophysical Mechanisms for Chemical Sensing of Neurotransmitters Fluorescence Resonance Energy , 2014 .

[53]  Xiaojiao Du,et al.  Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. , 2015, Analytica chimica acta.

[54]  Min Liu,et al.  Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. , 2015, Biosensors & bioelectronics.

[55]  Kh. Ghanbari,et al.  ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. , 2015, Analytical biochemistry.

[56]  M. Raucci,et al.  Preparation and Characterization of EG-Chitosan Nanocomposites via Direct Exfoliation: A Green Methodology , 2015 .

[57]  Yu Zhang,et al.  Poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid. , 2015, Biosensors & bioelectronics.

[58]  常东 Amperometric Determination of Dopamine Using ActivatedScreen-Printed Carbon Electrodes , 2015 .

[59]  S. Berchmans,et al.  Tailored interfacial architecture of chitosan modified glassy carbon electrodes facilitating selective, nanomolar detection of dopamine , 2016 .

[60]  Shen-ming Chen,et al.  Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine. , 2016, Carbohydrate polymers.

[61]  M. Ghaedi,et al.  Highly selective and sensitive determination of copper ion by two novel optical sensors , 2017 .

[62]  A. Bard,et al.  Visible Light Photoelectrochemical Properties of PbCrO4, Pb2CrO5, and Pb5CrO8 , 2017 .