Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps

Abstract Single optical photons can be detected by semiconductor diodes, that can operate in the triggered avalance mode. Physical properties and structural requirements of such single photon avalance diodes (SPADs) are analyzed. A simple silicon device which has interesting performances (60 ps resolution in single-photon timing, and low dark count rate (less than 10 3 pps at room temperature)) is described. Possible applications are discussed and experimental results are reported (measurements of fast fluorescent decays, and optical time-domain reflectometry in optical fibers with 1 cm resolution). Relations between the device performance and physical phenomena are considered. Criteria are derived for designing and implementing SPAD devices with improved performances. Possible new structures are presented and evaluated.

[1]  D. O'connor,et al.  Time-Correlated Single Photon Counting , 1984 .

[2]  W. Haecker,et al.  Influence of tunneling processes on avalanche breakdown in Ge and Si , 1973 .

[3]  W. Oldham,et al.  Triggering phenomena in avalanche diodes , 1972 .

[4]  M. H. Pilkuhn,et al.  Infrared Photon Counting by Ge Avalanche Diodes , 1971 .

[5]  R. Haitz,et al.  Model for the Electrical Behavior of a Microplasma , 1964 .

[6]  R. Haitz Mechanisms Contributing to the Noise Pulse Rate of Avalanche Diodes , 1965 .

[7]  H. Melchior,et al.  Atlanta fiber system experiment: Planar epitaxial silicon avalanche photodiode , 1978, The Bell System Technical Journal.

[8]  C. Bethea,et al.  Optical time domain reflectometer using a photon-counting InGaAs/InP avalanche photodiode at 1.3 μm , 1985 .

[9]  G. Keil,et al.  Microplasmas in GaAs Diodes , 1965 .

[10]  H. Sigmund Photoelectrical properties of spherical avalanche diodes in silicon , 1968 .

[11]  H. Bernt,et al.  Infrared detection by avalanche discharge in silicon p-n junctions , 1966 .

[12]  S. Cova,et al.  Carrier diffusion effects in the time-response of a fast photodiode , 1985 .

[13]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[14]  H. Melchior,et al.  Electrical suppression of avalanche currents in semiconductor junctions , 1969 .

[15]  Joe C. Campbell,et al.  Room‐temperature 1.3‐μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector , 1985 .

[16]  S. Cova,et al.  Towards picosecond resolution with single-photon avalanche diodes , 1981 .

[17]  R. J. McIntyre,et al.  Theory of Microplasma Instability in Silicon , 1961 .

[18]  Walter Fichtner,et al.  Time resolution of Ge avalanche photodiodes operating as photon counters in delayed coincidence , 1976 .

[19]  R. C. Strand,et al.  Scintillating Optical Fibers for Fine Grained Hodoscopes , 1981, IEEE Transactions on Nuclear Science.

[20]  A. Goetzberger,et al.  Avalanche Effects in Silicon p—n Junctions. II. Structurally Perfect Junctions , 1963 .

[21]  J. Conradi,et al.  The distribution of gains in uniformly multiplying avalanche photodiodes: Experimental , 1972 .

[22]  J. Müller Photodiodes for Optical Communication , 1981 .

[23]  B. F. Levine,et al.  Single photon detection at 1.3 μm using a gated avalanche photodiode , 1984 .

[24]  R. Cubeddu,et al.  A semiconductor detector for measuring ultraweak fluorescence decays with 70 ps FWHM resolution , 1983, IEEE Journal of Quantum Electronics.

[25]  R. J. McIntyre,et al.  On the avalanche initiation probability of avalanche diodes above the breakdown voltage , 1973 .