Learning connectedness in binary images

This paperproposesa new Eye-basedRecurrentNetwork Architecture(ERNA) for imageclassification. The new architectureis trainedby a combinationof QlearningandRPROP. Theclassificationperformanceis comparedwith othernetwork architecturesonthetaskof determiningconnectedness betweenpixelsin smallbinary images.Theexperimentsshow thatERNA outperformsboththestandardmulti-layer perceptronnetwork andthefully-connectedrecurrentnetwork on thetaskmentioned above. Thisperformanceleadsusto theconclusionthattheeye facilitateslearningin thetopologically-structuredomainof imageclassification.