Geometric theory of unimodular Pisot substitutions
暂无分享,去创建一个
[1] Michael Baake,et al. Digit tiling of euclidean space , 2000 .
[2] Richard Kenyon,et al. Arithmetic construction of sofic partitions of hyperbolic toral automorphisms , 1998, Ergodic Theory and Dynamical Systems.
[3] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[4] Jean-Pierre Gazeau,et al. From Quasicrystals to More Complex Systems , 2000 .
[5] A. Siegel,et al. Automate des pr'efixes-suffixes associ'e ` a une substitution primitive , 1999 .
[6] J. Kwapisz. A Dynamical Proof of Pisot's Theorem , 2006, Canadian Mathematical Bulletin.
[7] Richard Kenyon. The construction of self-similar tilings , 1995 .
[8] Yang Wang,et al. Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .
[9] P. Arnoux,et al. Pisot substitutions and Rauzy fractals , 2001 .
[10] Marcy Barge,et al. Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta $-shifts , 2006 .
[11] Brigitte Mossé,et al. Puissances de mots et reconnaissabilité des point fixes d'une substitution , 1992, Theor. Comput. Sci..
[12] Boris Solomyak,et al. Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.
[13] Robert V. Moody,et al. Model Sets: A Survey , 2000 .
[14] P. Walters. Introduction to Ergodic Theory , 1977 .
[15] Boris Solomyak,et al. Two-symbol Pisot substitutions have pure discrete spectrum , 2003, Ergodic Theory and Dynamical Systems.
[16] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[17] G. Rauzy. Rotations sur les groupes, nombres algébriques, et substitutions , 1988 .
[18] Boris Solomyak,et al. Consequences of Pure Point Diffraction Spectra for Multiset Substitution Systems , 2009, Discret. Comput. Geom..
[19] F. M. Dekking,et al. The spectrum of dynamical systems arising from substitutions of constant length , 1978 .
[20] A. Livshits. COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On the spectra of adic transformations of Markov compacta , 1987 .
[21] Marcy Barge,et al. Coincidence for substitutions of Pisot type , 2002 .
[22] Robert F. Williams. Classification of one dimensional attractors , 1968 .
[23] Pierre Arnoux,et al. Higher dimensional extensions of substitutions and their dual maps , 2001 .
[24] Boris Solomyak,et al. Nonperiodicity implies unique composition for self-similar translationally finite Tilings , 1998, Discret. Comput. Geom..
[25] Randolph B. Tarrier,et al. Groups , 1973, Algebra.
[26] Brigitte Mosse,et al. Properties of words and recognizability of fixed points of a substitution , 1992 .
[27] Jörg M. Thuswaldner,et al. Unimodular Pisot substitutions and their associated tiles , 2006 .
[28] Nick Lord,et al. Pisot and Salem Numbers , 1991 .
[29] Anthony Manning,et al. A Markov partition that reflects the geometry of a hyperbolic toral automorphism , 2002 .
[30] Lorenzo Sadun,et al. When shape matters: deformations of tiling spaces , 2003, Ergodic Theory and Dynamical Systems.
[31] G. Rauzy. Nombres algébriques et substitutions , 1982 .
[32] A. Siegel,et al. Pure discrete spectrum dynamical system and periodic tiling associated with a substitution , 2004 .
[33] B. Solomyak,et al. Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type , 2002, Canadian Mathematical Bulletin.
[34] I. Putnam,et al. Topological invariants for substitution tilings and their associated $C^\ast$-algebras , 1998, Ergodic Theory and Dynamical Systems.
[35] R. Salem. Algebraic numbers and Fourier analysis , 1963 .
[36] Bernard Host,et al. Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable , 1986, Ergodic Theory and Dynamical Systems.
[37] A. Siegel,et al. Geometric representation of substitutions of Pisot type , 2001 .