On the dual of a mixed H2/l1 optimisation problem

The general discrete-time Single-Input Single-Output (SISO) mixed H2/l1 control problem is considered in this paper. It is found that the existing results of duality theory cannot be directly applied to this infinite dimension optimisation problem. By means of two finite dimension approximate problems, to which duality theory can be applied, the dual of the mixed H2/l1 control problem is verified to be the limit of the duals of these two approximate problems.

[1]  Petros G. Voulgaris,et al.  Optimal H2/ℓ1 control: the SISO case , 1994 .

[2]  Petros G. Voulgaris Optimal H2/l1 control via duality theory , 1995, IEEE Trans. Autom. Control..

[3]  Petros G. Voulgaris Optimal H/sub 2//l/sub 1/ control: the SISO case , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  J. Brinkhuis Introduction to duality in optimization theory , 1996 .

[5]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[6]  M. Dahleh,et al.  Mixed Objective Control Synthesis: Optimal $\ell_ 1/{\cal H}_2$ Control , 1997 .

[7]  Mathukumalli Vidyasagar,et al.  Optimal rejection of persistent bounded disturbances , 1986 .

[8]  M. Dahleh,et al.  Mixed objective control synthesis: optimal l/sub 1///spl Hscr//sub 2/ control , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[9]  Murti V. Salapaka,et al.  MIMO optimal control design: the interplay between the H2 and the l1 norms , 1998, IEEE Trans. Autom. Control..

[10]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[11]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[12]  Mario Sznaier,et al.  On the Properties of the Solutions to Mixed l 1 / H ∞ Control Problems , 1996 .

[13]  Isaac Kaminer,et al.  Mixed H2/H∞ control for discrete-time systems via convex optimization , 1992, American Control Conference.

[14]  M. Dahleh,et al.  Solution of MIMO $\boldmath\mbox$\mathcalH_2/\ell_1$$ Problem Without Zero Interpolation , 1999 .

[15]  Jun Wu,et al.  Approximation methods of scalar mixed H2/l1 problems for discrete-time systems , 1999, IEEE Trans. Autom. Control..

[16]  N. Elia,et al.  Controller design with multiple objectives , 1997, IEEE Trans. Autom. Control..

[17]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[18]  Jian Chu,et al.  Mixed H 2 / l 1 Control For Discrete-Time Systems , 1996 .