Preservation by fibring of the finite model property
暂无分享,去创建一个
Cristina Sernadas | Amílcar Sernadas | Marcelo E. Coniglio | A. Sernadas | C. Sernadas | M. Coniglio
[1] C. Caleiro,et al. Fibring Logics∗ , 2009 .
[2] Dov M. Gabbay,et al. Handbook of Philosophical Logic , 2002 .
[3] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[4] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[5] Michael Mortimer,et al. On languages with two variables , 1975, Math. Log. Q..
[6] Arnon Avron,et al. The Semantics and Proof Theory of Linear Logic , 1988, Theor. Comput. Sci..
[7] David Makinson,et al. A normal modal calculus between T and S4 without the finite model property , 1969, Journal of Symbolic Logic.
[8] W. Marsden. I and J , 2012 .
[9] Laszlo Kalmar,et al. On the Reduction of the Decision Problem , 1947, J. Symb. Log..
[10] Avron Arnon. The semantics and proof theory of linear logic , 1988 .
[11] Cristina Sernadas,et al. Modulated Fibring and The Collapsing Problem , 2002, J. Symb. Log..
[12] John L. Pollock,et al. Basic modal logic , 1967, Journal of Symbolic Logic.
[13] E. J. Lemmon,et al. Algebraic semantics for modal logics I , 1966, Journal of Symbolic Logic (JSL).
[14] Jaime Ramos,et al. From Fibring to Cryptofibring. A Solution to the Collapsing Problem , 2007, Logica Universalis.
[15] Marcus Kracht,et al. Properties of independently axiomatizable bimodal logics , 1991, Journal of Symbolic Logic.
[16] Johan van Benthem,et al. Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..
[17] Cristina Sernadas,et al. Fibring: completeness preservation , 2001, Journal of Symbolic Logic.
[18] D. Gabbay. On decidable, finitely axiomatizable, modal and tense logics without the finite model property Part I , 1971 .
[19] Dov M. Gabbay,et al. Handbook of the history of logic , 2004 .
[20] Peter Jipsen,et al. Algebraic Aspects of Cut Elimination , 2004, Stud Logica.
[21] Lou Goble. A Proposal for Dealing with Deontic Dilemmas , 2004, DEON.
[22] Francesco Paoli. ★-autonomous Lattices , 2005, Stud Logica.
[23] Cristina Sernadas,et al. On Graph-theoretic Fibring of Logics , 2009, J. Log. Comput..
[24] Dov M. Gabbay. On decidable, finitely axiomatizable, modal and tense logics without the finite model property Part II , 1971 .
[25] Laszlo Kalmar,et al. On the Reduction of the Decision Problem: Third Paper. Pepis Prefix, a Single Binary Predicate , 1950, J. Symb. Log..
[26] Casey McGinnis. Tableau Systems for Some Paraconsistent Modal Logics , 2006, Electron. Notes Theor. Comput. Sci..
[27] W. Carnielli,et al. Logics of Formal Inconsistency , 2007 .
[28] Robert Goldblatt,et al. Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..
[29] Lennart Åqvist,et al. Combinations of Tense and Deontic Modality , 2004, DEON.
[30] Kazushige Terui,et al. The finite model property for various fragments of intuitionistic linear logic , 1999, Journal of Symbolic Logic.
[31] M. Nivat. Fiftieth volume of theoretical computer science , 1988 .
[32] Alasdair Urquhart,et al. Decidability and the finite model property , 1981, J. Philos. Log..
[33] Yves Lafont. The Finite Model Property for Various Fragments of Linear Logic , 1997, J. Symb. Log..
[34] Cristina Sernadas,et al. Fibring of Logics as a Categorial Construction , 1999, J. Log. Comput..
[35] Francesco Paoli. Substructural Logics: A Primer , 2011 .
[36] Dov M. Gabbay,et al. Fibred Semantics and the Weaving of Logics , 2012 .
[37] Lennart Åqvist,et al. Combinations of tense and deontic modality: On the Rt approach to temporal logic with historical necessity and conditional obligation , 2005, J. Appl. Log..
[38] Cristina Sernadas,et al. A Graph-theoretic Account of Logics , 2009, J. Log. Comput..
[39] Arnon Avron. Non-deterministic semantics for logics with a consistency operator , 2007, Int. J. Approx. Reason..
[40] E. J. Lemmon,et al. Algebraic semantics for modal logics II , 1966, Journal of Symbolic Logic.