Preservation by fibring of the finite model property

Capitalizing on the graph-theoretic account of fibring proposed in Sernadas et al.(2009, J. Log. Comput., 19, 1321–1357), we show that fibring preserves the finite model property under mild conditions. Illustrations are provided for modal, deontic, paraconsistent and linear logics.

[1]  C. Caleiro,et al.  Fibring Logics∗ , 2009 .

[2]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[3]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[4]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[5]  Michael Mortimer,et al.  On languages with two variables , 1975, Math. Log. Q..

[6]  Arnon Avron,et al.  The Semantics and Proof Theory of Linear Logic , 1988, Theor. Comput. Sci..

[7]  David Makinson,et al.  A normal modal calculus between T and S4 without the finite model property , 1969, Journal of Symbolic Logic.

[8]  W. Marsden I and J , 2012 .

[9]  Laszlo Kalmar,et al.  On the Reduction of the Decision Problem , 1947, J. Symb. Log..

[10]  Avron Arnon The semantics and proof theory of linear logic , 1988 .

[11]  Cristina Sernadas,et al.  Modulated Fibring and The Collapsing Problem , 2002, J. Symb. Log..

[12]  John L. Pollock,et al.  Basic modal logic , 1967, Journal of Symbolic Logic.

[13]  E. J. Lemmon,et al.  Algebraic semantics for modal logics I , 1966, Journal of Symbolic Logic (JSL).

[14]  Jaime Ramos,et al.  From Fibring to Cryptofibring. A Solution to the Collapsing Problem , 2007, Logica Universalis.

[15]  Marcus Kracht,et al.  Properties of independently axiomatizable bimodal logics , 1991, Journal of Symbolic Logic.

[16]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[17]  Cristina Sernadas,et al.  Fibring: completeness preservation , 2001, Journal of Symbolic Logic.

[18]  D. Gabbay On decidable, finitely axiomatizable, modal and tense logics without the finite model property Part I , 1971 .

[19]  Dov M. Gabbay,et al.  Handbook of the history of logic , 2004 .

[20]  Peter Jipsen,et al.  Algebraic Aspects of Cut Elimination , 2004, Stud Logica.

[21]  Lou Goble A Proposal for Dealing with Deontic Dilemmas , 2004, DEON.

[22]  Francesco Paoli ★-autonomous Lattices , 2005, Stud Logica.

[23]  Cristina Sernadas,et al.  On Graph-theoretic Fibring of Logics , 2009, J. Log. Comput..

[24]  Dov M. Gabbay On decidable, finitely axiomatizable, modal and tense logics without the finite model property Part II , 1971 .

[25]  Laszlo Kalmar,et al.  On the Reduction of the Decision Problem: Third Paper. Pepis Prefix, a Single Binary Predicate , 1950, J. Symb. Log..

[26]  Casey McGinnis Tableau Systems for Some Paraconsistent Modal Logics , 2006, Electron. Notes Theor. Comput. Sci..

[27]  W. Carnielli,et al.  Logics of Formal Inconsistency , 2007 .

[28]  Robert Goldblatt,et al.  Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..

[29]  Lennart Åqvist,et al.  Combinations of Tense and Deontic Modality , 2004, DEON.

[30]  Kazushige Terui,et al.  The finite model property for various fragments of intuitionistic linear logic , 1999, Journal of Symbolic Logic.

[31]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[32]  Alasdair Urquhart,et al.  Decidability and the finite model property , 1981, J. Philos. Log..

[33]  Yves Lafont The Finite Model Property for Various Fragments of Linear Logic , 1997, J. Symb. Log..

[34]  Cristina Sernadas,et al.  Fibring of Logics as a Categorial Construction , 1999, J. Log. Comput..

[35]  Francesco Paoli Substructural Logics: A Primer , 2011 .

[36]  Dov M. Gabbay,et al.  Fibred Semantics and the Weaving of Logics , 2012 .

[37]  Lennart Åqvist,et al.  Combinations of tense and deontic modality: On the Rt approach to temporal logic with historical necessity and conditional obligation , 2005, J. Appl. Log..

[38]  Cristina Sernadas,et al.  A Graph-theoretic Account of Logics , 2009, J. Log. Comput..

[39]  Arnon Avron Non-deterministic semantics for logics with a consistency operator , 2007, Int. J. Approx. Reason..

[40]  E. J. Lemmon,et al.  Algebraic semantics for modal logics II , 1966, Journal of Symbolic Logic.