Infrared Nanophotonics Based on Graphene Plasmonics

Graphene plasmonics has recently attracted remarkable attention, with reports of numerous intriguing properties and novel device demonstrations. As a two-dimensional (2-D) semimetal with ultrahigh carrier mobility, graphene can host plasmon waves that exhibit extremely tight spatial confinement, exceptionally long plasmon lifetime, and an electrostatically tunable response in the mid-infrared (mid-IR) and terahertz (THz). These properties render graphene a viable plasmonic material for achieving novel functionalities in various mid-IR to THz photonic systems. From the device perspective, we review the key distinguishing features of graphene plasmons and highlight the latest developments, such as mid-IR and THz tunable infrared sources, modulators, and photodetectors. Finally, we discuss future challenges and new opportunities for graphene plasmonics in infrared photonic systems.

[1]  O. P. Marshall,et al.  Gain modulation by graphene plasmons in aperiodic lattice lasers , 2016, Science.

[2]  Steven G. Louie,et al.  Controlling inelastic light scattering quantum pathways in graphene , 2011, Nature.

[3]  M. Rudner,et al.  Chiral plasmons without magnetic field , 2015, Proceedings of the National Academy of Sciences.

[4]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[5]  Juan C. Garcia,et al.  Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. , 2017, Nano letters.

[6]  Jean-Jacques Greffet,et al.  Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law , 1998 .

[7]  L Piatkowski,et al.  Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. , 2015, Nature nanotechnology.

[8]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[9]  A. Rogalski Infrared detectors: an overview , 2002 .

[10]  S. Sarma,et al.  Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene , 2007, 0711.0754.

[11]  K. Klitzing,et al.  Observation of retardation effects in the spectrum of two-dimensional plasmons. , 2003, Physical review letters.

[12]  Hai Zhu,et al.  Silicon-on-Glass Graphene-Functionalized Leaky Cavity Mode Nanophotonic Biosensor , 2014 .

[13]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[14]  M. Schirmer,et al.  THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND MID-INFRARED IMAGING DATA , 2013, 1308.4989.

[15]  M. Zanni,et al.  Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation. , 2006, Optics letters.

[16]  A. S. Petrov,et al.  Amplified-reflection plasmon instabilities in grating-gate plasmonic crystals , 2016, 1610.07035.

[17]  Xing Zhu,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[18]  Qi Jie Wang,et al.  Designer spoof surface plasmon structures collimate terahertz laser beams. , 2010, Nature materials.

[19]  P. Holmstrom,et al.  High-speed mid-IR modulator using Stark shift in step quantum wells , 2001 .

[20]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[21]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[22]  W. Petrich MID-INFRARED AND RAMAN SPECTROSCOPY FOR MEDICAL DIAGNOSTICS , 2001 .

[23]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[24]  Alexei Tsekoun,et al.  Intersubband absorption of quantum cascade laser structures and its application to laser modulation , 2008 .

[25]  Wenjuan Zhu,et al.  Photocurrent in graphene harnessed by tunable intrinsic plasmons , 2013, Nature Communications.

[26]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[27]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[28]  Fulvio Parmigiani,et al.  Direct view of hot carrier dynamics in graphene. , 2013, Physical review letters.

[29]  T. Stauber,et al.  Graphene plasmons and retardation: Strong light-matter coupling , 2012, 1204.6209.

[30]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[31]  P. Werle,et al.  Near- and mid-infrared laser-optical sensors for gas analysis , 2002 .

[32]  S. Reutebuch,et al.  Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. , 2005 .

[33]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[34]  Xiaoxia Yang,et al.  Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons , 2016, Nature Communications.

[35]  Tunneling Plasmonics in Bilayer Graphene. , 2015, Nano letters.

[36]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[37]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[38]  John D. Joannopoulos,et al.  Near-field thermal radiation transfer controlled by plasmons in graphene , 2012, 1201.1489.

[39]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[40]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[41]  Valerio Pruneri,et al.  Double-layer graphene for enhanced tunable infrared plasmonics , 2017, Light: Science & Applications.

[42]  J. Kong,et al.  Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple. , 2014, Nano letters.

[43]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[44]  Manijeh Razeghi,et al.  Advances in mid-infrared detection and imaging: a key issues review , 2014, Reports on progress in physics. Physical Society.

[45]  D. Lang,et al.  Complex nature of gold-related deep levels in silicon , 1980 .

[46]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[47]  J. Chevrier,et al.  Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics , 2012, 1201.1824.

[48]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[49]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[50]  F. Xia,et al.  Tunable Plasmon–Phonon Polaritons in Layered Graphene–Hexagonal Boron Nitride Heterostructures , 2015 .

[51]  Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures. , 2016, ACS nano.

[52]  Federico Capasso,et al.  Harvesting renewable energy from Earth’s mid-infrared emissions , 2014, Proceedings of the National Academy of Sciences.

[53]  V. V. Popov,et al.  Giant plasmon instability in a dual-grating-gate graphene field-effect transistor , 2016, 1601.08108.

[54]  H. Atwater,et al.  Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. , 2014, Nano letters.

[55]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[56]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[57]  Jérôme Faist,et al.  Graphene–Metamaterial Photodetectors for Integrated Infrared Sensing , 2016 .

[58]  Hai Zhu,et al.  Optoelectromechanical multimodal biosensor with graphene active region. , 2014, Nano letters.

[59]  Zhenjun Li,et al.  Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage. , 2015, Nanoscale.

[60]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[61]  Fernando Obelleiro,et al.  Toward ultimate nanoplasmonics modeling. , 2014, ACS nano.

[62]  Harry A. Atwater,et al.  Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays , 2016, Nature Communications.

[63]  J. Faist,et al.  Mid-infrared frequency comb based on a quantum cascade laser , 2012, Nature.

[64]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[65]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[66]  A. Zhu,et al.  Graphene nanophotonic sensors , 2015 .

[67]  Fei Yi,et al.  Cavity-enhanced mid-infrared absorption in perforated graphene , 2014 .

[68]  Federico Capasso,et al.  High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers , 2001 .

[69]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[70]  A. Rogalski Infrared detectors: status and trends , 2003 .

[71]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[72]  D. Ham,et al.  Plasmonic mass and Johnson–Nyquist noise , 2015, Nanotechnology.

[73]  Ming C. Wu,et al.  Enhanced modulation bandwidth of nanocavity light emitting devices. , 2009, Optics express.

[74]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[75]  J. Kottmann,et al.  Retardation-induced plasmon resonances in coupled nanoparticles. , 2001, Optics letters.

[76]  F. Guinea,et al.  Electrothermal Control of Graphene Plasmon–Phonon Polaritons , 2017, Advanced materials.

[77]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[78]  A. Centeno,et al.  Photoexcitation cascade and multiple hot-carrier generation in graphene , 2012, Nature Physics.

[79]  F. Xia,et al.  Graphene Plasmonic Metasurfaces to Steer Infrared Light , 2015, Scientific Reports.

[80]  R. Bistritzer,et al.  Electronic cooling in graphene. , 2009, Physical review letters.

[81]  S. R. Andrews,et al.  Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces , 2008 .

[82]  Jean-Jacques Greffet,et al.  Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton , 1997 .

[83]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[84]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[85]  E. Cubukcu,et al.  Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons , 2013 .

[86]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[87]  Dirk Englund,et al.  High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit. , 2015, Nano letters.

[88]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[89]  Jonghwan Kim,et al.  Graphene for Tunable Nanophotonic Resonators , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[90]  Wenjuan Zhu,et al.  Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. , 2014, Nano letters.

[91]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[92]  Lei Wang,et al.  Measurement of collective dynamical mass of Dirac fermions in graphene. , 2014, Nature nanotechnology.

[93]  F. Guinea,et al.  Electron-Electron Interactions in Graphene: Current Status and Perspectives , 2010, 1012.3484.

[94]  F. Guinea,et al.  Novel midinfrared plasmonic properties of bilayer graphene. , 2013, Physical review letters.

[95]  P. Kim,et al.  Plasmonics with two-dimensional conductors , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[96]  M. Lipson,et al.  Broadband mid-infrared frequency comb generation in a Si3N4 microresonator , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[97]  Nicholas X. Fang,et al.  Chiral plasmon in gapped Dirac systems , 2015, 1509.00790.

[98]  D. Englund,et al.  Active 2D materials for on-chip nanophotonics and quantum optics , 2017 .

[99]  A. Chandrakasan,et al.  Graphene-Based Thermopile for Thermal Imaging Applications. , 2015, Nano letters.

[100]  M. Polini,et al.  Theory of the plasma-wave photoresponse of a gated graphene sheet , 2013, 1307.0734.

[101]  Ultrasmall volume plasmons, yet with complete retardation effects. , 2008, Physical review letters.

[102]  Qiangfei Xia,et al.  Black Phosphorus Mid-Infrared Photodetectors with High Gain. , 2016, Nano letters.

[103]  Harry A. Atwater,et al.  Tunable large resonant absorption in a midinfrared graphene Salisbury screen , 2014 .

[104]  R. Yu,et al.  Electrical detection of single graphene plasmons , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[105]  Federico Capasso,et al.  Spoof plasmon analogue of metal-insulator-metal waveguides. , 2011, Optics express.

[106]  F. Guinea,et al.  Substrate-limited electron dynamics in graphene , 2007, 0711.1303.

[107]  Kenji Watanabe,et al.  Thermoelectric detection and imaging of propagating graphene plasmons. , 2017, Nature materials.

[108]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[109]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[110]  Yurii A. Vlasov,et al.  Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides , 2010, 1001.1533.

[111]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[112]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[113]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[114]  Harry A. Atwater,et al.  Electronic modulation of infrared radiation in graphene plasmonic resonators. , 2015, Nature communications.