Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes

Nonreciprocal devices that permit wave transmission in only one direction are indispensible in many fields of science including, e.g., electronics, optics, acoustics, and thermodynamics. Manipulating phonons using such nonreciprocal devices may have a range of applications such as phonon diodes, transistors, switches, etc. One way of achieving nonreciprocal phononic devices is to use materials with strong nonlinear response to phonons. However, it is not easy to obtain the required strong mechanical nonlinearity, especially for few-phonon situations. Here, we present a general mechanism to amplify nonlinearity using $\mathcal{PT}$-symmetric structures, and show that an on-chip micro-scale phonon diode can be fabricated using a $\mathcal{PT}$-symmetric mechanical system, in which a lossy mechanical-resonator with very weak mechanical nonlinearity is coupled to a mechanical resonator with mechanical gain but no mechanical nonlinearity. When this coupled system transits from the $\mathcal{PT}$-symmetric regime to the broken-$\mathcal{PT}$-symmetric regime, the mechanical nonlinearity is transferred from the lossy resonator to the one with gain, and the effective nonlinearity of the system is significantly enhanced. This enhanced mechanical nonlinearity is almost lossless because of the gain-loss balance induced by the $\mathcal{PT}$-symmetric structure. Such an enhanced lossless mechanical nonlinearity is then used to control the direction of phonon propagation, and can greatly decrease (by over three orders of magnitude) the threshold of the input-field intensity necessary to observe the unidirectional phonon transport. We propose an experimentally realizable lossless low-threshold phonon diode of this type. Our study opens up new perspectives for constructing on-chip few-phonon devices and hybrid phonon-photon components.

[1]  M. Roukes,et al.  Phase synchronization of two anharmonic nanomechanical oscillators. , 2013, Physical review letters.

[2]  Tal Carmon,et al.  Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. , 2005, Physical review letters.

[3]  M. Calleja,et al.  Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers. , 2009, Nano letters.

[4]  Andrew J Landahl,et al.  Engineering giant nonlinearities in quantum nanosystems. , 2008, Physical review letters.

[5]  Xu Ni,et al.  Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. , 2011, Physical review letters.

[6]  Hailin Wang,et al.  Resolved-sideband and cryogenic cooling of an optomechanical resonator , 2009 .

[7]  Tsampikos Kottos,et al.  Experimental study of active LRC circuits with PT symmetries , 2011, 1109.2913.

[8]  Xue-Feng Zhu,et al.  P T -Symmetric Acoustics , 2014 .

[9]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[10]  K. Qu,et al.  Spontaneous generation of photons in transmission of quantum fields inPT-symmetric optical systems , 2011, 1109.3379.

[11]  C. Bender,et al.  Observation of PT phase transition in a simple mechanical system , 2012, 1206.4972.

[12]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[13]  V. Vinokur,et al.  Stimulation of the fluctuation superconductivity by PT symmetry. , 2010, Physical review letters.

[14]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[15]  Kerry J. Vahala,et al.  Coherent mixing of mechanical excitations in nano-optomechanical structures , 2009, 0908.1128.

[16]  Xiang Zhang,et al.  One-way invisible cloak using parity-time symmetric transformation optics. , 2013, Optics letters.

[17]  J. Grossman,et al.  Phonon diodes and transistors from magneto-acoustics , 2014, 1401.6537.

[18]  H. Harney,et al.  PT symmetry and spontaneous symmetry breaking in a microwave billiard. , 2011, Physical review letters.

[19]  I. Mahboob,et al.  Interconnect-free parallel logic circuits in a single mechanical resonator , 2011, Nature communications.

[20]  A. Fujiwara,et al.  Phonon lasing in an electromechanical resonator. , 2013, Physical review letters.

[21]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[22]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[23]  M. Lipson,et al.  Eliminating structural loss in optomechanical resonators using elastic wave interference , 2013, CLEO: 2013.

[24]  Y. Kivshar,et al.  Nonlinear suppression of time reversals in PT-symmetric optical couplers , 2010, 1009.5428.

[25]  H. V. D. Zant,et al.  Mechanical systems in the quantum regime , 2011, 1106.2060.

[26]  S. Girvin,et al.  Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. , 2005, Physical review letters.

[27]  A. Lemaître,et al.  Wavelength-sized GaAs optomechanical resonators with gigahertz frequency , 2011, 1101.4499.

[28]  G. Theocharis,et al.  Bifurcation-based acoustic switching and rectification. , 2011, Nature materials.

[29]  Yeshaiahu Fainman,et al.  Nonreciprocal Light Propagation in a Silicon Photonic Circuit , 2011, Science.

[30]  Baowen Li,et al.  Thermal memory: a storage of phononic information. , 2008, Physical review letters.

[31]  Lei Wang,et al.  Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond , 2012 .

[32]  Mordechai Segev,et al.  Nonlinearly induced PT transition in photonic systems. , 2013, Physical review letters.

[33]  Shiyue Hua,et al.  Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators , 2014, Nature Photonics.

[34]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[35]  Henri Benisty,et al.  Implementation of PT symmetric devices using plasmonics: principle and applications. , 2011, Optics express.

[36]  Gerard J. Milburn,et al.  Quantum electromechanical systems , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[37]  H. Tang,et al.  Cascaded optical transparency in multimode-cavity optomechanical systems , 2014, Nature Communications.

[38]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[39]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[40]  Chao Hang,et al.  PT symmetry with a system of three-level atoms. , 2012, Physical review letters.

[41]  Nick Lazarides,et al.  Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials. , 2012, Physical review letters.

[42]  R. Fleury,et al.  Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator , 2014, Science.

[43]  Amit Vainsencher,et al.  Nanomechanical coupling between microwave and optical photons , 2013, Nature Physics.

[44]  K. Vahala,et al.  Radiation-pressure-driven micro-mechanical oscillator , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[45]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[46]  Liang Hao,et al.  Observation of a fast evolution in a parity-time-symmetric system , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  Hailin Wang,et al.  Optomechanical Dark Mode , 2012, Science.

[48]  J. Davis,et al.  Remote sensing in hybridized arrays of nanostrings. , 2014, Nano letters.

[49]  R Almog,et al.  Noise squeezing in a nanomechanical Duffing resonator. , 2007, Physical review letters.

[50]  M. Roukes,et al.  Nonlinear dynamics and chaos in two coupled nanomechanical resonators , 2008, 0811.0870.

[51]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[52]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[53]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[54]  N. Nishiguchi,et al.  High-efficient acoustic wave rectifier , 2007 .

[55]  B. Liang,et al.  An acoustic rectifier. , 2010, Nature materials.

[56]  H. Yilmaz,et al.  Loss-induced suppression and revival of lasing , 2014, Science.

[57]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[58]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[59]  T. J. Kippenberg,et al.  Cavity optomechanics with ultrahigh-Q crystalline microresonators , 2009, 0911.1178.

[60]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[61]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[62]  R. W. Andrews,et al.  Bidirectional and efficient conversion between microwave and optical light , 2013, Nature Physics.

[63]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[64]  Tal Carmon,et al.  Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. , 2009, Physical review letters.

[65]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[66]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[67]  Xuefeng Zhu,et al.  PT-symmetric acoustics , 2015 .

[68]  Franco Nori,et al.  Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity , 2014, 1403.0049.

[69]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[70]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[71]  D. Christodoulides,et al.  Observation of asymmetric transport in structures with active nonlinearities. , 2013, Physical review letters.

[72]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[73]  A. G. Every,et al.  Reciprocity in reflection and transmission: What is a ‘phonon diode’? , 2013 .

[74]  Steven A Cummer,et al.  Non-reciprocal and highly nonlinear active acoustic metamaterials , 2014, Nature Communications.

[75]  I. Mahboob,et al.  Optical Tuning of Coupled Micromechanical Resonators , 2009 .

[76]  Franco Nori,et al.  PT-symmetric phonon laser. , 2014, Physical review letters.

[77]  Yu-xi Liu,et al.  Mechanical PT symmetry in coupled optomechanical systems , 2014, 1402.7222.

[78]  Andrea Alù,et al.  An invisible acoustic sensor based on parity-time symmetry , 2015, Nature Communications.

[79]  I. V. Barashenkov,et al.  Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[80]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .