Modeling, Analysis, and Estimation of an in vitro HIV Infection Using Functional Differential Equations

BORTZ, DAVID MATTHEW. Modeling, Analysis, and Estimation of an in vitro HIV Infection Using Functional Differential Equations (Under the direction of H. Thomas Banks). This dissertation focuses on developing mathematical and computational tools for use as an aid in understanding the cellular population dynamics of an in vitro HIV experiment. We carefully develop a functional differential equation model which incorporates mathematical mechanisms that account for both the biological delays and the parameter uncertainty inherent in the system. We present the theoretical foundations for our methodology which then allow us to develop a numerical approximation scheme and perform parameter identifications (even on the delay distributions) and sensitivity analyses. We summarize the results of a numerical investigation of the delays followed by the results from the nonlinear least squares inverse problem. We then present a statistical significance argument for the importance of the delay mechanism as well as the results of a sample sensitivity analysis of the system with respect to select parameters. MODELING, ANALYSIS, AND ESTIMATION OF AN IN VITRO HIV INFECTION USING FUNCTIONAL DIFFERENTIAL EQUATIONS BY DAVID MATTHEW BORTZ A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY OF NORTH CAROLINA STATE UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY APPLIED MATHEMATICS COMPUTATIONAL MATHEMATICS CONCENTRATION RALEIGH, NORTH CAROLINA AUGUST 2002

[1]  R W Makuch,et al.  A stochastic modeling of early HIV-1 population dynamics. , 2001, Mathematical biosciences.

[2]  Alan S Perelson,et al.  HIV-1 infection and low steady state viral loads , 2002, Bulletin of mathematical biology.

[3]  Ivan Kramer,et al.  Modeling the dynamical impact of HIV on the immune system: Viral clearance, infection, and AIDS , 1999 .

[4]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[5]  Jaap Goudsmit,et al.  Ongoing HIV dissemination during HAART , 1999, Nature Medicine.

[6]  Jose B. Cruz,et al.  System Sensitivity Analysis , 1982 .

[7]  A. Perelson,et al.  Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection , 1995, Nature.

[8]  A. L. Lloyd,et al.  The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  A. Perelson,et al.  A model of HIV-1 pathogenesis that includes an intracellular delay. , 2000, Mathematical biosciences.

[10]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[11]  J. Griffiths The Theory of Stochastic Processes , 1967 .

[12]  H. Bergström,et al.  Weak convergence of measures , 1982 .

[13]  Z. Grossman,et al.  HIV infection: how effective is drug combination treatment? , 1998, Immunology today.

[14]  Andrzej P. Wierzbicki,et al.  Models and sensitivity of control systems , 1984 .

[15]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[16]  M. Emerman HIV-1, Vpr and the cell cycle , 1996, Current Biology.

[17]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[18]  Patrick W Nelson,et al.  Mathematical analysis of delay differential equation models of HIV-1 infection. , 2002, Mathematical biosciences.

[19]  Georgios E. Stavroulakis,et al.  Parameter sensitivity in nonlinear mechanics. Theory and finite element computations: by M. Kleiber, H. Antúney, T. D. Hien, P. Kowalczyck (Wiley, Chichester, 1997) , 1998 .

[20]  A. Perelson,et al.  HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time , 1996, Science.

[21]  Jim M Cushing,et al.  Integrodifferential Equations and Delay Models in Population Dynamics. , 1978 .

[22]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[23]  Ragnar Frisch,et al.  The Characteristic Solutions of a Mixed Difference and Differential Equation Occuring in Economic Dynamics , 1935 .

[24]  M. Nowak,et al.  Virus dynamics: Mathematical principles of immunology and virology , 2001 .

[25]  Harvey Thomas Banks,et al.  Modeling and estimating uncertainty in parameter estimation , 2001 .

[26]  M. Nowak,et al.  Dynamic multidrug therapies for HIV: a control theoretic approach. , 2015, Journal of theoretical biology.

[27]  H. T. Banks IDENTIFICATION OF NONLINEAR DELAY SYSTEMS USING SPLINE METHODS , 1980 .

[28]  Jian-Ming Jin,et al.  Computation of special functions , 1996 .

[29]  M A Nowak,et al.  Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. , 1997, Journal of theoretical biology.

[30]  H. Banks,et al.  Spline approximations for functional differential equations , 1979 .

[31]  S. M. Shinners Sensitivity analysis of dynamic systems , 1965 .

[32]  Mansour Eslami,et al.  Theory of Sensitivity in Dynamic Systems: An Introduction , 1994 .

[33]  S. Ruan,et al.  A delay-differential equation model of HIV infection of CD4(+) T-cells. , 2000, Mathematical biosciences.

[34]  Henryk Górecki,et al.  Analysis and Synthesis of Time Delay Systems , 1989 .

[35]  R. D. Driver,et al.  Ordinary and Delay Differential Equations , 1977 .

[36]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[37]  V. Jansen,et al.  The Role of T Cell Help for Anti-viral Ctl Responses , 2001 .

[38]  A S Perelson,et al.  Modeling plasma virus concentration during primary HIV infection. , 2000, Journal of theoretical biology.

[39]  H. Banks Incorporation of uncertainty in inverse problems , 2003 .

[40]  Robert M. May,et al.  Stability and Complexity in Model Ecosystems , 2019, IEEE Transactions on Systems, Man, and Cybernetics.

[41]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[42]  C. Benson,et al.  Viral Dynamics in Human Immunodeficiency Virus Type 1 Infection , 1995 .

[43]  L. Monteiro,et al.  A condition for successful escape of a mutant after primary HIV infection. , 2000, Journal of theoretical biology.

[44]  Sebastian Bonhoeffer,et al.  Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis , 1999, The Lancet.

[45]  Judy Tam,et al.  Delay effect in a model for virus replication. , 1999, IMA journal of mathematics applied in medicine and biology.

[46]  Lisa Gayle Stanley Computational Methods for Sensitivity Analysis with Applications to Elliptic Boundary Value Problems , 1999 .

[47]  Alan S. Perelson,et al.  Decay characteristics of HIV-1-infected compartments during combination therapy , 1997, Nature.

[48]  G. M. Ortiz,et al.  Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection , 2000, AIDS.

[49]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[50]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[51]  W. Tan,et al.  Stochastic modeling of the dynamics of CD4+ T-cell infection by HIV and some Monte Carlo studies. , 1998, Mathematical biosciences.

[52]  A L Lloyd,et al.  Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[54]  W. Tan,et al.  Some state space models of HIV pathogenesis under treatment by anti-viral drugs in HIV-infected individuals. , 1999, Mathematical biosciences.

[55]  M. Eslami,et al.  Introduction to System Sensitivity Theory , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[56]  M. Emerman,et al.  A competition model for viral inhibition of host cell proliferation. , 2000, Mathematical biosciences.

[57]  H C T,et al.  A Stochastic Model for Early HIV-1 Population Dynamics , 1998 .

[58]  G. E. Hutchinson,et al.  CIRCULAR CAUSAL SYSTEMS IN ECOLOGY , 1948, Annals of the New York Academy of Sciences.

[59]  D Wick,et al.  Early HIV infection in vivo: branching-process model for studying timing of immune responses and drug therapy. , 2000, Mathematical biosciences.

[60]  D. Gershfeld,et al.  Special functions for engineers and applied mathematicians , 1986, IEEE Journal of Oceanic Engineering.

[61]  M A Nowak,et al.  Dynamics of macrophage and T cell infection by HIV. , 1999, Journal of theoretical biology.

[62]  A S Perelson,et al.  Effect of Drug Efficacy and the Eclipse Phase of the Viral Life Cycle on Estimates of HIV Viral Dynamic Parameters , 2001, Journal of acquired immune deficiency syndromes.

[63]  A. Perelson,et al.  Influence of delayed viral production on viral dynamics in HIV-1 infected patients. , 1998, Mathematical biosciences.

[64]  Michel Loève,et al.  Probability Theory I , 1977 .

[65]  V De Gruttola,et al.  Estimation of HIV dynamic parameters. , 1998, Statistics in medicine.

[66]  M. Nowak,et al.  HIV-1 Vpr increases viral expression by manipulation of the cell cycle: A mechanism for selection of Vpr in vivo , 1998, Nature Medicine.

[67]  D. Stroock,et al.  Probability Theory: An Analytic View , 1995, The Mathematical Gazette.

[68]  A S Perelson,et al.  Mathematical analysis of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. , 1998, Journal of theoretical biology.

[69]  G. A. Pinter,et al.  Modeling of nonlinear hysteresis in elastomers , 1999 .

[70]  W. V. Loscutoff,et al.  General sensitivity theory , 1972 .

[71]  M. Emerman,et al.  The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection , 1995, Journal of virology.

[72]  H. Banks,et al.  Hereditary Control Problems: Numerical Methods Based on Averaging Approximations , 1978 .

[73]  A. Friedman Foundations of modern analysis , 1970 .

[74]  R. Haftka,et al.  Sensitivity Analysis of Discrete Structural Systems , 1986 .

[75]  A S Perelson,et al.  Improved estimates for HIV-1 clearance rate and intracellular delay. , 1999, AIDS.

[76]  Rachel Levy,et al.  Modeling control of HIV infection through structured treatment interruptions with recommendations for experimental protocol , 2001 .

[77]  Harvey Thomas Banks,et al.  Statistical methods for model comparison in parameter estimation problems for distributed systems , 1990 .

[78]  Bert Fristedt,et al.  A modern approach to probability theory , 1996 .

[79]  M A Nowak,et al.  Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[80]  H. T. Banks,et al.  Electromagnetic material interrogation using conductive interfaces and acoustic wavefronts , 2000, Frontiers in applied mathematics.

[81]  Davide Verotta,et al.  Non-linear dynamics models characterizing long-term virological data from AIDS clinical trials. , 2002, Mathematical biosciences.

[82]  Andrew N. Phillips,et al.  Reduction of HIV Concentration During Acute Infection: Independence from a Specific Immune Response , 1996, Science.

[83]  Abba B. Gumel,et al.  A mathematical model for the dynamics of HIV-1 during the typical course of infection , 2001 .

[84]  J. C. Helton,et al.  An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models , 1988 .

[85]  A D Kelleher,et al.  A model of primary HIV-1 infection. , 1998, Mathematical biosciences.

[86]  A. Perelson Modelling viral and immune system dynamics , 2002, Nature Reviews Immunology.

[87]  K Dietz,et al.  Analysis of a model for the pathogenesis of AIDS. , 1997, Mathematical biosciences.

[88]  Donald E. Knuth,et al.  The TeXbook , 1984 .

[89]  D M Bortz,et al.  Incorporation of variability into the modeling of viral delays in HIV infection dynamics. , 2003, Mathematical biosciences.