High repetition rate fiber and integrated waveguide femtosecond lasers

Femtosecond lasers and the development of frequency combs have revolutionized multiple fields like metrology, spectroscopy, medical diagnostics and optical communications. However, to enable wider adoption of the technology and new applications like photonic sampling, optical arbitrary waveform generation or the calibration of astronomical spectrographs, multi-GHz repetition rate femtosecond lasers with robust performance metrics, low cost, and a compact footprint are highly desirable. In this thesis, different approaches to develop GHz mode-locked laser systems at telecommunication wavelengths are discussed and current achievements presented. Design aspects for constructing a long-term stable and compact fiber laser with 187 fs short pulses at a repetition rate of 1 GHz are covered. In order to scale the repetition rate into the multiGHz regime, coherent pulse interleaving in novel thermally tunable waveguide interleavers is demonstrated at 10 GHz. A femtosecond erbium-doped waveguide laser is developed at GHz repetition rates and important design guidelines are provided. As saturable Bragg reflectors are crucial in all of the described systems to enable mode-locking, saturable absorber optimization is discussed and their optical performance compared. Thus, this research paves the way for compact, affordable high repetition rate fiber lasers and monolithically integrated femtosecond laser sources which can be combined on-chip with additional functionalities to develop novel photonic systems with impact on spectroscopy, sensing, telecommunications and biomedical applications. Thesis Supervisor: Erich P. Ippen Title: Elihu Thomson Professor of Electrical Engineering, Professor of Physics Thesis Supervisor: Franz X. Kdrtner Title: Adjunct Professor, Electrical Engineering and Computer Science

[1]  A. Gossard,et al.  Fast nonlinear optical response from proton‐bombarded multiple quantum well structures , 1985 .

[2]  H. Haus Theory of mode locking with a fast saturable absorber , 1975 .

[3]  J. E. Cunningham,et al.  Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors , 1996 .

[4]  Rüdiger Paschotta,et al.  Passive mode locking with slow saturable absorbers , 2001 .

[5]  J. Shmulovich,et al.  Integrated Low-Jitter 400-MHz Femtosecond Waveguide Laser , 2009, IEEE Photonics Technology Letters.

[6]  F. Kartner,et al.  Widely tunable large area SBRs for ultra-short pulse generation , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[7]  Jörg Krüger,et al.  Femtosecond laser damage of a high reflecting mirror , 2002 .

[8]  S. Campbell The Science and Engineering of Microelectronic Fabrication , 2001 .

[9]  Jun Ye,et al.  Passively mode-locked glass waveguide laser with 14-fs timing jitter. , 2003, Optics letters.

[10]  E. R. Thoen,et al.  Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror , 2000, IEEE Photonics Technology Letters.

[11]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[12]  Juliet Tara Gopinath,et al.  Studies of third-order nonlinearities in materials and devices for ultrafast lasers , 2005 .

[13]  J V Moloney,et al.  3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers. , 2005, Optics express.

[15]  Rajeev J Ram,et al.  High speed analog-to-digital conversion with silicon photonics , 2009, OPTO.

[16]  S. Yamashita,et al.  Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. , 2004, Optics letters.

[17]  David Chao,et al.  Self-referenced 1.5 µm fiber frequency combs at GHz repetition rates , 2012 .

[18]  Franz X Kärtner,et al.  Compact, stable 1 GHz femtosecond Er-doped fiber lasers. , 2010, Applied optics.

[19]  C. M. Kim,et al.  Analysis of dielectric rectangular waveguide by modified effective-index method , 1986 .

[20]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[21]  W. Xia,et al.  Theoretical and experimental study of laser induced damage on GaAs by nanosecond pulsed irradiation , 2011 .

[22]  A. Weiner,et al.  Optical arbitrary waveform processing of more than 100 spectral comb lines , 2007 .

[23]  Andrew Szentgyorgyi,et al.  A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1 , 2008, Nature.

[24]  Qiuqin Sheng,et al.  A Novel Interleaver Based on Dual-Pass Mach-Zehnder Interferometer , 2004 .

[25]  M. Kawachi Silica waveguides on silicon and their application to integrated-optic components , 1990 .

[26]  Franz X. Kärtner,et al.  Attosecond‐precision ultrafast photonics , 2010 .

[27]  E. Ippen,et al.  Large-area broadband saturable Bragg reflectors by use of oxidized AlAs. , 2004, Optics letters.

[28]  Rüdiger Paschotta,et al.  Timing jitter and phase noiseof mode-locked fiber lasers. , 2010, Optics express.

[29]  Z. Zhu,et al.  Quasi-discrete Hankel transform. , 1998, Optics letters.

[30]  M. Kirchner,et al.  Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider. , 2011, Optics letters.

[31]  S. Namiki,et al.  116-fs soliton source based on an Er-Yb codoped waveguide amplifier , 1998, IEEE Photonics Technology Letters.

[32]  S. Klein,et al.  Passage of particles through matter , 2000 .

[33]  D. Christodoulides,et al.  Vector solitons in birefringent nonlinear dispersive media. , 1988, Optics letters.

[34]  Markus Pollnau,et al.  Erbium‐doped integrated waveguide amplifiers and lasers , 2011 .

[35]  Jonathan R. Birge,et al.  Dynamics of dispersion managed octave-spanning titanium:sapphire lasers , 2009 .

[36]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[37]  J. Schlager,et al.  Passively mode-locked waveguide laser with low residual jitter , 2002, IEEE Photonics Technology Letters.

[38]  H. Haus Theory of mode locking with a slow saturable absorber , 1975 .

[39]  A. Weiner,et al.  Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb. , 2009, Optics express.

[40]  Miguel V. Andrés,et al.  Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm , 2004 .

[41]  W. Burns,et al.  Mode dispersion in diffused channel waveguides by the effective index method. , 1977, Applied optics.

[42]  K. Weingarten,et al.  Passively modelocked 77 GHz Er:Yb:glass laser , 2007 .

[43]  Ursula Keller,et al.  Soliton mode-locking with saturable absorbers , 1996 .

[44]  F. Kartner,et al.  Self-referenced Erbium fiber laser frequency comb at a GHz repetition rate , 2012, OFC/NFOEC.

[45]  Demonstration of a 10 GHz CMOS-compatible integrated photonic analog-to-digital converter , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[46]  W. Knox,et al.  Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser. , 1997, Optics express.

[47]  J. N. Kutz,et al.  Stabilized pulse spacing in soliton lasers due to gain depletion and recovery , 1998 .

[48]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[49]  A. Luiten,et al.  Ultra-low noise microwave extraction from fiber-based optical frequency comb , 2009, EFTF-2010 24th European Frequency and Time Forum.

[50]  Lei Liu,et al.  Design and applications of planar waveguide interleaving filters , 2005, SPIE/OSA/IEEE Asia Communications and Photonics.

[51]  Ursula Keller,et al.  Mode-locking with slow and fast saturable absorbers-what's the difference? , 1998 .

[52]  P. Delfyett,et al.  Harmonically mode-locked glass waveguide laser with 21-fs timing jitter , 2005, IEEE Photonics Technology Letters.

[53]  M. Golling,et al.  SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[54]  H Kogelnik,et al.  Scaling rules for thin-film optical waveguides. , 1974, Applied optics.

[55]  M. Oguma,et al.  Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide , 2004, Journal of Lightwave Technology.

[56]  Masataka Nakazawa,et al.  2.56 Tbit/s/ch polarization-multiplexed DQPSK transmission over 300 km using time-domain optical fourier transformation , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[57]  O. Okhotnikov,et al.  Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications , 2004 .

[58]  Takafumi Chiba,et al.  Waveguide interleaving filters , 2003, SPIE ITCom.

[59]  A. Smith,et al.  Birefringence induced by bends and twists in single-mode optical fiber. , 1980, Applied optics.

[60]  Franz X Kärtner,et al.  Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers. , 2008, Optics express.

[61]  W. Knox,et al.  Self-starting passive harmonic mode-locked femtosecond Yb/sup 3+/-doped fiber laser at 1030 nm , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[62]  J. P. Callan,et al.  GaAs under Intense Ultrafast Excitation: Response of the Dielectric Function , 1998 .

[63]  Robert R. Thomson,et al.  320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber , 2010 .

[64]  M. Jablonski,et al.  Laser mode locking using a saturable absorber incorporating carbon nanotubes , 2004, Journal of Lightwave Technology.

[65]  E. Kamaratos Developments regarding the Bragg rule for stopping power and critical examination of its application to water , 1983 .

[66]  Matthew E. Grein,et al.  Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors , 2001 .

[67]  E. Ippen,et al.  Saturable absorbers with large area broadband Bragg reflectors for femtosecond pulse generation , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[68]  I. Ryazansky,et al.  Integrated planar waveguide amplifier with 15 dB net gain at 1550 nm , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[69]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[70]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[71]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[72]  Erich P. Ippen,et al.  Subpicosecond kilowatt pulses from a mode‐locked cw dye laser , 1974 .

[73]  Frederick J. O'Donnell,et al.  Optically sampled analog-to-digital converters , 2001 .

[74]  Andreas Leven,et al.  Optical Arbitrary Waveform Generation , 2007 .

[75]  K. Weingarten,et al.  100 GHz passively mode-locked Er:Yb:glass laser at 1.5 microm with 1.6-ps pulses. , 2008, Optics express.

[76]  Claude Rullière,et al.  Femtosecond Laser Pulses , 1998 .

[77]  C.R. Doerr,et al.  Interleaver technology: comparisons and applications requirements , 2004, Journal of Lightwave Technology.

[78]  Franz X Kärtner,et al.  High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter. , 2008, Optics letters.

[79]  L. Feldman,et al.  High resistivity in InP by helium bombardment , 1984 .

[80]  Hyunil Byun Integrated high-repetition-rate femtosecond lasers at 1.55 µm , 2010 .

[81]  S. Cundiff Metrology: New generation of combs , 2007, Nature.

[82]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[83]  F. Kärtner,et al.  Kerr-lens mode locking with minimum nonlinearity using gain-matched output couplers. , 2010, Optics letters.

[84]  David C. Brown,et al.  Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers , 2001 .

[85]  R. Stolen,et al.  The soliton laser. , 1984, Optics letters.

[86]  F. Wise,et al.  Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz , 2006, QELS 2006.

[87]  Kai Starke,et al.  Femtosecond laser pulse induced breakdown in dielectric thin films , 2001 .

[88]  M. Nakazawa,et al.  147 fs, 51 MHz soliton fiber laser at 1.56 µm with a fiber-connector-type SWNT/P3HT saturable absorber , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[89]  W. Knox,et al.  Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber. , 1998, Optics letters.

[90]  K Bergman,et al.  Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. , 1998, Optics letters.

[91]  Jie Sun,et al.  Photonic ADC: overcoming the bottleneck of electronic jitter. , 2012, Optics express.

[92]  K. Chiang,et al.  Dual effective-index method for the analysis of rectangular dielectric waveguides. , 1986, Applied optics.

[93]  George C Valley,et al.  Photonic analog-to-digital converters. , 2007, Optics express.

[94]  Luke A. Emmert,et al.  Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses , 2010 .

[95]  E. Ippen,et al.  Time-resolved spectroscopy of hemoglobin and its complexes with subpicosecond optical pulses. , 1976, Science.

[96]  Anh-Vu Pham,et al.  Demonstration of Spectral Phase O-CDMA Encoding and Decoding in Monolithically Integrated Arrayed-Waveguide-Grating-Based Encoder , 2006, IEEE Photonics Technology Letters.

[97]  L. Hollberg,et al.  Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. , 2005, Optics letters.

[98]  Gianluca Galzerano,et al.  Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser , 2006 .

[99]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[100]  F. Leonberger,et al.  Multiple-energy proton bombardment in n+-GaAs , 1977 .

[101]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[102]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[103]  Hermann A. Haus,et al.  Additive pulse mode locking , 1989, Annual Meeting Optical Society of America.

[104]  Erich P. Ippen,et al.  Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption , 2000 .

[105]  Z. M. Yang,et al.  3-Dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion. , 2009, Optics express.

[106]  Douglas B. Leviton,et al.  Temperature-dependent absolute refractive index measurements of synthetic fused silica , 2006, SPIE Astronomical Telescopes + Instrumentation.

[107]  E. Ippen,et al.  Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti: sapphire lasers. , 2010, Optics express.

[108]  Ali Motamedi Ultrafast nonlinear optical properties of passive and active semiconductor devices , 2011 .

[109]  Harold K. Haugen,et al.  Femtosecond laser pulse ablation of GaAs and InP: studies utilizing scanning and transmission electron microscopy , 2003 .

[110]  Jawad A. Salehi Emerging OCDMA communication systems and data networks (Invited) , 2007 .

[111]  Richard P. Mirin,et al.  Compact solid-state waveguide lasers , 2003 .

[112]  M. Hyodo,et al.  Active stabilization of a higher-order mode-locked fiber laser operating at a pulse-repetition rate of 154 GHz. , 2001, Optics letters.

[113]  A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz. , 2007, Optics express.

[114]  Masud Mansuripur,et al.  Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. , 2007, Optics letters.

[115]  Manuel Guizar-Sicairos,et al.  Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[116]  Perry,et al.  Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. , 1996, Physical review. B, Condensed matter.

[117]  R. Holzwarth,et al.  High‐precision wavelength calibration of astronomical spectrographs with laser frequency combs , 2007, astro-ph/0703622.

[118]  M. Cascaded Coupler Mach-Zehnder Channel Dropping Filters for Wavelength-Division-Multiplexed Optical Systems , 2009 .

[119]  J. Keinonen,et al.  Optical properties of ion irradiated and annealed InGaAs/GaAs quantum wells and semiconductor saturable absorber mirrors , 2005 .

[120]  David J. Richardson,et al.  Passive harmonic modelocking of a fibre soliton ring laser , 1993 .

[121]  F. Kärtner,et al.  Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution. , 2008, Optics express.

[122]  Erich P. Ippen,et al.  Principles of passive mode locking , 1994 .

[123]  Kwangyun Jung,et al.  Impact of pulse dynamics on timing jitter in mode-locked fiber lasers. , 2011, Optics letters.

[124]  F. Kärtner,et al.  Stabilization of solitonlike pulses with a slow saturable absorber. , 1995, Optics letters.

[125]  E. Ippen,et al.  Sub-picosecond relaxation of large organic molecules in solution , 1977 .