State observer and observability conditions for a class of hybrid continuous-discrete dynamic system

This paper deals with observability conditions and state observer design for a class of hybrid systems combining continuous and discrete dynamics. The main contribution of the work lies in the performed observability conditions for this class of systems and a design of hybrid observer to reconstruct both continuous and discrete states starting only from the knowledge of a continuous output. An illustrative example is presented showing the efficiency of the proposed observer.

[1]  Magnus Egerstedt,et al.  An observer for linear systems with randomly-switching measurement equations , 2003, Proceedings of the 2003 American Control Conference, 2003..

[2]  Leonid M. Fridman,et al.  Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs , 2007, Int. J. Syst. Sci..

[3]  Andrea Balluchi,et al.  A hybrid observer for the driveline dynamics , 2001, 2001 European Control Conference (ECC).

[4]  Maria Domenica Di Benedetto,et al.  Observability of Internal Variables in Interconnected Switching Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[5]  Mohamed Djemai,et al.  Singularly perturbed method for the control design of a synchronous motor with its PWM inverter , 1995, Proceedings of International Conference on Control Applications.

[6]  Michel Fliess,et al.  Generalized controller canonical form for linear and nonlinear dynamics , 1990 .

[7]  M. I. Castellanos,et al.  Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs , 2007, Int. J. Syst. Sci..

[8]  R. Hirschorn Invertibility of multivariable nonlinear control systems , 1979 .

[9]  Noureddine Manamanni,et al.  Exact differentiation and sliding mode observers for switched Lagrangian systems , 2006 .

[10]  S. Shankar Sastry,et al.  Observability of Linear Hybrid Systems , 2003, HSCC.

[11]  Jean-Pierre Barbot,et al.  State and unknown input estimation for linear discrete-time systems , 2006, Autom..

[12]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[13]  Mamadou Mboup,et al.  Analyse et représentation de signaux transitoires : application à la compression, au débruitage et à la détection de ruptures , 2005 .

[14]  J. P. Gauteier G. BORNlrRD OBSERVABILITY FOR ANY u(t) OF A CLASS OF NONLINEAR SYSTEMS , 1980 .

[15]  Peter Vas,et al.  Sensorless vector and direct torque control , 1998 .

[16]  F. Allgöwer,et al.  Finite time convergent observers for nonlinear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[17]  S. Pettersson Synthesis of switched linear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[18]  E. Sontag,et al.  Generalized Controller Canonical Forms for Linear and Nonlinear Dynamics , 1990 .

[19]  Noureddine Manamanni,et al.  SLIDING MODE OBSERVER FOR TRIANGULAR INPUT HYBRID SYSTEM , 2005 .

[20]  J. Gauthier,et al.  Observability for any of a class of nonlinear systems , 1981 .

[21]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[22]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[23]  Giorgio Battistelli,et al.  Active mode observability of switching linear systems , 2007, Autom..