Heteroclinic Dynamics of Localized Frequency Synchrony: Stability of Heteroclinic Cycles and Networks

In the first part of this paper, we showed that three coupled populations of identical phase oscillators give rise to heteroclinic cycles between invariant sets where populations show distinct frequencies. Here, we now give explicit stability results for these heteroclinic cycles for populations consisting of two oscillators each. In systems with four coupled phase oscillator populations, different heteroclinic cycles can form a heteroclinic network. While such networks cannot be asymptotically stable, the local attraction properties of each cycle in the network can be quantified by stability indices. We calculate these stability indices in terms of the coupling parameters between oscillator populations. Hence, our results elucidate how oscillator coupling influences sequential transitions along a heteroclinic network where individual oscillator populations switch sequentially between a high and a low frequency regime; such dynamics appear relevant for the functionality of neural oscillators.

[1]  Olga Podvigina,et al.  Stability and bifurcations of heteroclinic cycles of type Z , 2011, 1108.4204.

[2]  Tiago Pereira,et al.  Towards a theory for diffusive coupling functions allowing persistent synchronization , 2013, 1304.7679.

[3]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[4]  Peter Ashwin,et al.  Almost Complete and Equable Heteroclinic Networks , 2020, J. Nonlinear Sci..

[5]  D. Pazó,et al.  Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation. , 2019, Physical review. E.

[6]  Christian Bick,et al.  Chaotic weak chimeras and their persistence in coupled populations of phase oscillators , 2015, 1509.08824.

[7]  Alexander Lohse,et al.  Stability in simple heteroclinic networks in , 2014, 1401.3993.

[8]  Christian Bick,et al.  Heteroclinic switching between chimeras. , 2017, Physical review. E.

[9]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[10]  P. Ashwin,et al.  Weak chimeras in minimal networks of coupled phase oscillators. , 2014, Chaos.

[11]  Michael Field,et al.  Stationary bifurcation to limit cycles and heteroclinic cycles , 1991 .

[12]  M. Krupa Robust heteroclinic cycles , 1997 .

[13]  P. Ashwin,et al.  The dynamics ofn weakly coupled identical oscillators , 1992 .

[14]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[15]  Peter Ashwin,et al.  On local attraction properties and a stability index for heteroclinic connections , 2010, 1008.3063.

[16]  Melbourne,et al.  Asymptotic stability of heteroclinic cycles in systems with symmetry , 1995, Ergodic Theory and Dynamical Systems.

[17]  Ian Melbourne,et al.  An example of a nonasymptotically stable attractor , 1991 .

[18]  Sofia B. S. D. Castro,et al.  Chaotic switching in a two-person game , 2010 .

[19]  J. Kelso,et al.  The Metastable Brain , 2014, Neuron.

[20]  Marc Timme,et al.  Computation by switching in complex networks of states. , 2012, Physical review letters.

[21]  A. Selverston,et al.  Dynamical principles in neuroscience , 2006 .

[22]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[23]  Stephen Coombes,et al.  Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience , 2015, The Journal of Mathematical Neuroscience.

[24]  Michael Field,et al.  Patterns of desynchronization and resynchronization in heteroclinic networks , 2017 .

[25]  Werner Brannath,et al.  Heteroclinic networks on the tetrahedron , 1994 .

[26]  Vivien Kirk,et al.  A competition between heteroclinic cycles , 1994 .

[27]  Peter Ashwin,et al.  Hopf normal form with $S_N$ symmetry and reduction to systems of nonlinearly coupled phase oscillators , 2015, 1507.08079.

[28]  O. Omel'chenko,et al.  The mathematics behind chimera states , 2018 .

[29]  Christian Bick,et al.  Heteroclinic Dynamics of Localized Frequency Synchrony: Heteroclinic Cycles for Small Populations , 2018, Journal of Nonlinear Science.

[30]  D. Hansel,et al.  Phase Dynamics for Weakly Coupled Hodgkin-Huxley Neurons , 1993 .

[31]  Alexander Lohse Stability of heteroclinic cycles in transverse bifurcations , 2015 .

[32]  Liliana Garrido-da-Silva,et al.  Stability of quasi-simple heteroclinic cycles , 2016, 1606.02592.

[33]  Alexandre A. P. Rodrigues,et al.  Attractors in complex networks. , 2017, Chaos.

[34]  Alexander Lohse,et al.  Switching in Heteroclinic Networks , 2016, SIAM J. Appl. Dyn. Syst..

[35]  Christian Bick,et al.  Isotropy of Angular Frequencies and Weak Chimeras with Broken Symmetry , 2015, J. Nonlinear Sci..

[36]  Peter Ashwin,et al.  From coupled networks of systems to networks of states in phase space , 2018 .