Non-linear time series clustering based on non-parametric forecast densities
暂无分享,去创建一个
José Antonio Vilar | A. M. Alonso | Juan Manuel Vilar | J. A. Vilar | J. Vilar | A. Alonso | José A. Vilar | Andrés M. Alonso | Juan M. Vilar
[1] Wenceslao González-Manteiga,et al. Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes , 1997 .
[2] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[3] P. Vieu. Order Choice in Nonlinear Autoregressive Models , 1995 .
[4] Edoardo Otranto,et al. Clustering heteroskedastic time series by model-based procedures , 2008, Comput. Stat. Data Anal..
[5] Ahlame Douzal Chouakria,et al. Adaptive dissimilarity index for measuring time series proximity , 2007, Adv. Data Anal. Classif..
[6] E. Mammen,et al. Bootstrap of kernel smoothing in nonlinear time series , 2002 .
[7] Elizabeth Ann Maharaj,et al. A SIGNIFICANCE TEST FOR CLASSIFYING ARMA MODELS , 1996 .
[8] Marcella Corduas,et al. Time series clustering and classification by the autoregressive metric , 2008, Comput. Stat. Data Anal..
[9] Francesco Giordano,et al. Forecasting nonlinear time series with neural network sieve bootstrap , 2007, Comput. Stat. Data Anal..
[10] José A. Vilar,et al. Discriminant and cluster analysis for Gaussian stationary processes: local linear fitting approach , 2004 .
[11] H. Tong. Non-linear time series. A dynamical system approach , 1990 .
[12] Timo Teräsvirta,et al. Testing linearity in univariate, time series models , 1988 .
[13] Salvatore Grimaldi,et al. Linear Parametric Models Applied to Hydrological Series , 2004 .
[14] Ahlame Douzal Chouakria,et al. Adaptive clustering for time series: Application for identifying cell cycle expressed genes , 2009, Comput. Stat. Data Anal..
[15] Jeffrey D. Hart,et al. Automated Kernel Smoothing of Dependent Data by Using Time Series Cross‐Validation , 1994 .
[16] Lijian Yang,et al. Nonparametric Lag Selection for Time Series , 2000 .
[17] T. P. Hettmansperger,et al. Data-based bandwidth selection for kernel estimators of the integral of f2(x) , 1994 .
[18] Tomasz Rychlik,et al. Bounds for expectation of l-estimates for dependent samples , 1993 .
[19] D. Piccolo. A DISTANCE MEASURE FOR CLASSIFYING ARIMA MODELS , 1990 .
[20] Qiwei Yao,et al. On subset selection in non-parametric stochastic regression , 1994 .
[21] Jorge Caiado,et al. A periodogram-based metric for time series classification , 2006, Comput. Stat. Data Anal..
[22] Dag Tjøstheim,et al. Nonparametric Identification of Nonlinear Time Series: Selecting Significant Lags , 1994 .
[23] Matteo Grigoletto,et al. Bootstrap prediction intervals for autoregressions: some alternatives , 1998 .
[24] M. C. Jones,et al. A reliable data-based bandwidth selection method for kernel density estimation , 1991 .
[25] Mike Dale,et al. Building Models of Ecological Dynamics Using HMM Based Temporal Data Clustering - A Preliminary Study , 2001, IDA.
[26] T. Warren Liao,et al. Clustering of time series data - a survey , 2005, Pattern Recognit..
[27] Robert H. Shumway,et al. Discrimination and Clustering for Multivariate Time Series , 1998 .
[28] Denis Bosq,et al. Nonparametric statistics for stochastic processes , 1996 .
[29] A. I. McLeod,et al. DIAGNOSTIC CHECKING ARMA TIME SERIES MODELS USING SQUARED‐RESIDUAL AUTOCORRELATIONS , 1983 .
[30] 柿沢 佳秀,et al. Asymptotic theory of statistical inference for time series , 2000 .