Theoretical investigation of the interaction of oxygen with pure and K-doped NiTi shape memory surface alloys

Abstract Density functional based theories and experiments agree well on the value of the heat of formation of TiO2 on NiTi surfaces. However, experimental studies of polycrystalline NiTi surfaces tend to indicate that Ti atoms are always abundantly available at the surface. This theoretical study indicates that whether Ti atoms are dominantly available at the surface depends on the surface index. On NiTi(001) in the B2 phase, the surface can be Ti or Ni terminated, with equal probability, while on NiTi(110) in the B2 phase and NiTi(010) in the B19ʼ phase, Ti atoms are favored to be present at the surface.

[1]  Helmut Eschrig,et al.  T > 0 ensemble-state density functional theory via Legendre transform , 2010, 1002.4267.

[2]  N. Amrane,et al.  Electronic study of FeTi, CoTi, and NiTi alloys: bulk, surfaces, and interfaces , 2003 .

[3]  Yong Qing Fu,et al.  Characterization of TiNi shape-memory alloy thin films for MEMS applications , 2001 .

[4]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[5]  Marcus Textor,et al.  Titanium in Medicine : material science, surface science, engineering, biological responses and medical applications , 2001 .

[7]  R. Sinclair,et al.  The structure of TiNi martensite , 1981 .

[8]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[9]  R. Sinclair,et al.  The B2 To R Transformation in Ti50Ni47Fe3 and Ti49.5Ni50.5 alloys , 1985 .

[10]  G. Winter,et al.  Evaluation of biomaterials , 1980 .

[11]  K. Kokko,et al.  Low-temperature specific heat of near-equiatomic Ni-rich B19′-TiNi-alloys , 1998 .

[12]  J. G. Snijders,et al.  Relativistic calculations on the adsorption of CO on the (111) surfaces of Ni, Pd, and Pt within the zeroth-order regular approximation , 1997 .

[13]  T. Gentle,et al.  SiO2‐Si interface formation by catalytic oxidation using alkali metals and removal of the catalyst species , 1986 .

[14]  S. Raaen,et al.  Initial oxidation of pure and K doped NiTi shape memory alloys , 2009 .

[15]  Evert Jan Baerends,et al.  Quadratic integration over the three-dimensional Brillouin zone , 1991 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  G. Andreasen A clinical trial of alignment of teeth using a 0.019 inch thermal nitinol wire with a transition temperature range between 31 °C. and 45 °C. , 1980 .

[18]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[19]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[20]  P. Lehenkari,et al.  Bone modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation. , 1999, Biomaterials.

[21]  W. J. Buehler,et al.  Crystal Structure and a Unique ``Martensitic'' Transition of TiNi , 1965 .

[22]  T. W. Duerig,et al.  Oxidation of an NiTi alloy , 1990 .

[23]  C. Leyens,et al.  Titanium and Titanium Alloys , 1954 .

[24]  D. Kim,et al.  Simon nitinol inferior vena cava filter: initial clinical experience. Work in progress. , 1989, Radiology.

[25]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[26]  J. Planell,et al.  Electrochemical behaviour of oxidized NiTi shape memory alloys for biomedical applications , 2007 .

[27]  John Arents,et al.  Atomic Structure Calculations , 1964 .

[28]  E. Baerends,et al.  Precise density-functional method for periodic structures. , 1991, Physical review. B, Condensed matter.

[29]  Fu-hui Wang,et al.  Electronic structures and shape-memory behavior of Ti50Ni50-xCux (x = 0, 6.25, 12.5, 18.75 and 25.0 at%) by density functional theory , 2007 .

[30]  H. Jeong,et al.  NEXAFS and XPS characterization of molecular oxygen adsorbed on Ni(100) at 80 K , 2000 .

[31]  V. Egorushkin,et al.  Electronic structure of low-index surfaces in TiNi and its change under oxide layer growth , 2006 .

[32]  P. Chu,et al.  Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation. , 2007, Acta biomaterialia.

[33]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[34]  W. Cai,et al.  First-principles study on alloying effect on martensitic transformation behavior of TiNi alloy , 2007 .

[35]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[36]  G. Bihlmayer,et al.  Electronic structure of the martensitic phases B19'-NiTi and B19-PdTi , 1993 .

[37]  Geunsik Lee,et al.  Electronic structure of low-index surfaces in austenitic and martensitic phases of TiNi and TiPd alloys , 2004 .

[38]  Jingchuan Zhu,et al.  First‐principles study on the elastic properties and electronic structure of TiNi‐based ternary shape memory alloys , 2006 .

[39]  Surface electronic structure of Ti-based transition metal alloys , 2002 .

[40]  Baba,et al.  Bonding, structure, and magnetism of physisorbed and chemisorbed O2 on Pt(111). , 1990, Physical review letters.