Chemical beam epitaxy

Chemical beam epitaxy (CBE), an offshoot of molecular-beam epitaxy (MBE) and metalorganic chemical vapor deposition (MO-CVD), is described. It combines the beam nature of MBE and the control and use of all-vapor source as in MO-CVD. The growth kinetics of all three processes are examined, and their advantages and disadvantages are considered. The monolayer thickness control capabilities of CBE are highlighted. Device applications of CBE are discussed.<<ETX>>

[1]  B. Joyce,et al.  Reflection high‐energy electron diffraction oscillations from vicinal surfaces—a new approach to surface diffusion measurements , 1985 .

[2]  J. Zyskind,et al.  Chemical beam epitaxial growth of extremely high quality InGaAs on InP , 1986 .

[3]  Gerald B. Stringfellow,et al.  OMVPE growth of GaInP , 1983 .

[4]  M. Mashita,et al.  Silicon doping from disilane in gas source MBE of GaAs , 1987 .

[5]  A. Y. Cho,et al.  Bonding direction and surface‐structure orientation on GaAs (001) , 1976 .

[6]  F. J. Morris,et al.  A new GaAs, GaP, and GaAsxP1−x vacuum deposition technique using arsine and phosphine gas , 1974 .

[7]  S. Hiyamizu,et al.  MBE Growth of High-Quality GaAs Using Triethylgallium as a Gallium Source , 1986 .

[8]  W. Tsang The growth of GaAs, AIGaAs, InP and InGaAs by chemical beam epitaxy using group III and V alkyls , 1986 .

[9]  T. Bridges,et al.  Picosecond study of near-band-gap nonlinearities in GaInAsP , 1986 .

[10]  Y. G. Chai,et al.  A PH3 cracking furnace for molecular beam epitaxy , 1983 .

[11]  G. B. Stringfellow,et al.  Organometallic vapor phase epitaxial growth of InP using new phosphorus sources , 1986 .

[12]  Henryk Temkin,et al.  Gas source MBE of InP and GaxIn1−xPyAs1−y : Materials properties and heterostructure lasers , 1985 .

[13]  H. Lüth,et al.  A comparative study of Ga(CH3)3 and Ga(C2H5)3 in the mombe of GaAs , 1986 .

[14]  N. M. Cho,et al.  Optimal surface and growth front of III–V semiconductors in molecular beam epitaxy: A study of kinetic processes via reflection high energy electron diffraction specular beam intensity measurements on GaAs(100) , 1986 .

[15]  S. Chu,et al.  Optical properties of very thin GaInAs(P)/InP quantum wells grown by gas source molecular beam epitaxy , 1986 .

[16]  P. Petroff,et al.  GaInAs(P)/InP quantum well structures grown by gas source molecular beam epitaxy , 1985 .

[17]  H. Kroemer,et al.  Heterostructure bipolar transistors and integrated circuits , 1982, Proceedings of the IEEE.

[18]  1.6 µm wavelength GaInAsP/InP lasers prepared by two-phase solution technique , 1981, IEEE Journal of Quantum Electronics.

[19]  Won-Tien Tsang,et al.  Very low current threshold GaAs/Al0.5Ga0.5As double‐heterostructure lasers grown by chemical beam epitaxy , 1986 .

[20]  W. Tsang Chemical beam epitaxial growth of very low threshold Ga0.47In0.53As/InP double‐heterostructure and multiquantum well lasers , 1986 .

[21]  W. Tsang,et al.  Extremely high quality Ga0.47In0.53As/InP quantum wells grown by chemical beam epitaxy , 1986 .

[22]  G. Qua,et al.  InP/In0.53Ga0.47As heterojunction phototransistors grown by chemical beam epitaxy , 1987, IEEE Electron Device Letters.

[23]  V. Deline,et al.  The influence of growth chemistry on the MOVPE growth of GaAs and AlxGa1−xAs layers and heterostructures , 1986 .

[24]  C. Fonstad,et al.  (In,Ga)As/InP n-p-n heterojunction bipolar transistors grown by liquid phase epitaxy with high DC current gain , 1984, IEEE Electron Device Letters.

[25]  C. Foxon,et al.  Evaluation of surface kinetic data by the transform analysis of modulated molecular beam measurements , 1974 .

[26]  W. Tsang Chemical beam epitaxy of Ga0.47In0.53As/InP quantum wells and heterostructure devices , 1987 .

[27]  M. Panish,et al.  High-speed InGaAs(P)/InP double-heterostructure bipolar transistors , 1987, IEEE Electron Device Letters.

[28]  Miller,et al.  Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. , 1985, Physical review. B, Condensed matter.

[29]  Dependence of the conduction in In0.53Ga0.47As‐InP double‐barrier tunneling structures on the mesa‐etching process , 1987 .

[30]  W. Tsang Chemical beam epitaxy of InGaAs , 1985 .

[31]  C. Dulcey,et al.  Mechanistic studies of the decomposition of trimethylaluminum on heated surfaces , 1985 .

[32]  J. R. Arthur Interaction of Ga and As2 Molecular Beams with GaAs Surfaces , 1968 .

[33]  K. Carey Organometallic vapor phase epitaxial growth and characterization of high purity GaInAs on InP , 1985 .

[34]  J. Harris,et al.  Oscillations in the surface structure of Sn-doped GaAs during growth by MBE , 1981 .

[35]  P. D. Moskowitz,et al.  Hazard characterization and management of arsine and gallium arsenide in large-scale production of gallium arsenide thin film photovoltaic cells , 1986 .

[36]  D.L. Miller,et al.  AlGaAs/GaAs heterojunction bipolar transistors fabricated using a self-aligned dual-lift-off process , 1987, IEEE Electron Device Letters.

[37]  Manijeh Razeghi,et al.  Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs (0.44 , 1983 .

[38]  A. Mossman,et al.  Effects of exposure to toxic gases: first aid and medical treatment , 1970 .

[39]  G. B. Stringfellow,et al.  Organometallic vapor phase epitaxial growth of high purity GaInAs using trimethylindium , 1984 .

[40]  Harris,et al.  Spectroscopy of excited states in In0.53Ga0.47 As-InP single quantum wells grown by chemical-beam epitaxy. , 1986, Physical review. B, Condensed matter.

[41]  P. Francois Dispersion-free single-mode doubly clad fibres with small pure bend losses , 1982 .

[42]  Uziel Koren,et al.  Wavelength selective interlayer directionally grating‐coupled InP/InGaAsP waveguide photodetection , 1987 .

[43]  R. M. Redstall,et al.  Applications of Electrochemical Methods for Semiconductor Characterization I . Highly Reproducible Carrier Concentration Profiling of VPE “Hi‐Lo” , 1980 .

[44]  1.55‐μm optical logic étalon with picojoule switching energy made of InGaAs/InP multiple quantum wells , 1987 .

[45]  M. Panish Molecular Beam Epitaxy of GaAs and InP with Gas Sources for As and P , 1980 .

[46]  A. Calawa On the use of AsH3 in the molecular beam epitaxial growth of GaAs , 1981 .

[47]  S. Chu,et al.  Ga0.47In0.53As/InP superlattices grown by chemical beam epitaxy: Absorption, photoluminescence excitation, and photocurrent spectroscopies , 1987 .

[48]  S. Denbaars,et al.  Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD , 1986 .

[49]  J. Butler,et al.  In situ, real-time diagnostics of OMVPE using IR-diode laser spectroscopy☆ , 1986 .

[50]  D. Tsui,et al.  Electronic properties of In0.53Ga0.47As‐InP single quantum wells grown by chemical beam epitaxy , 1987 .

[51]  Anupam Madhukar,et al.  Reflection high energy electron diffraction intensity behavior during homoepitaxial molecular beam epitaxy growth of GaAs and implications for growth kinetics and mechanisms , 1985 .

[52]  Joe C. Campbell,et al.  High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy , 1988 .

[53]  B. Joyce,et al.  Dynamic effects in RHEED from MBE grown GaAs(001) surfaces , 1986 .

[54]  M. G. Jacko,et al.  THE PYROLYSIS OF TRIMETHYL GALLIUM , 1963 .

[55]  Jasprit Singh,et al.  A study of novel growth approaches to influence the growth mechanism and interface quality in heterostructures grown by molecular beam epitaxy , 1986 .

[56]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[57]  G. B. Stringfellow VPE Growth of III/V Semiconductors , 1978 .

[58]  C. Wood RED intensity oscillations during MBE of GaAs , 1981 .

[59]  M. Panish,et al.  InGaAs/InP double-heterostructure bipolar transistors with near-ideal β versus ICcharacteristic , 1986, IEEE Electron Device Letters.

[60]  G. B. Stringfellow,et al.  Use of tertiarybutylarsine for GaAs growth , 1987 .

[61]  Very high quality single and multiple GaAs quantum wells grown by chemical beam epitaxy , 1986 .

[62]  J. Cunningham,et al.  Observations on intensity oscillations in reflection high‐energy electron diffraction during chemical beam epitaxy , 1987 .

[63]  R. R. O'Brien,et al.  On the measurement of impurity atom distributions by the differential capacitance technique , 1969 .

[64]  Won-Tien Tsang,et al.  High performance Ga0.47In0.53As photoconductive detectors grown by chemical beam epitaxy , 1986 .

[65]  H. Yamauchi,et al.  Metabolism and excretion of orally ingested trimethylarsenic in man , 1984, Bulletin of environmental contamination and toxicology.

[66]  H. Henisch,et al.  Drift-diffusion theory of symmetrical double-junction diodes , 1982 .

[67]  Won-Tien Tsang,et al.  Elimination of oval defects in epilayers by using chemical beam epitaxy , 1985 .

[68]  W. Tsang,et al.  Two-dimensional electron gas in a Ga0.47In0.53As/InP heterojunction grown by chemical beam epitaxy , 1986 .

[69]  T. Ishibashi,et al.  High-frequency characteristics of AlGaAs/GaAs heterojunction bipolar transistors , 1984, IEEE Electron Device Letters.

[70]  Park,et al.  Room-temperature optical nonlinearities in GaAs. , 1986, Physical review letters.

[71]  W. C. Johnson,et al.  The influence of debye length on the C-V measurement of doping profiles , 1971 .

[72]  J. Gibbons,et al.  Growth of GaAs by metalorganic chemical vapor deposition using thermally decomposed trimethylarsenic , 1987 .

[73]  B. Joyce,et al.  Temporal intensity variations in RHEED patterns during film growth of GaAs by MBE , 1983 .

[74]  M. Lambert,et al.  Epitaxie par jets moléculaires de In0.53Ga0.47As et de InP sur substrats de InP , 1983 .

[75]  R. Bhat,et al.  Growth of high‐quality GaAs using trimethylgallium and diethylarsine , 1987 .

[76]  S. Price,et al.  Pyrolysis of triethylgallium by the toluene carrier technique , 1979 .

[77]  Salah M. Bedair,et al.  Atomic layer epitaxy of III‐V binary compounds , 1985 .

[78]  W. Tsang GaInAsP/InP double heterostructure lasers emitting at 1.5 μm grown by chemical beam epitaxy , 1987 .

[79]  H. Lüth,et al.  Doping of GaAs in metalorganic MBE using gaseous sources , 1987 .

[80]  E. Burkhardt,et al.  Growth of high‐quality GaxIn1−xAsyP1−y by chemical beam epitaxy , 1987 .

[81]  M. Mashita,et al.  The pyrolysis temperature of triethylgallium in the presence of arsine of trimethylaluminum , 1986 .

[82]  W. Tsang Chemical beam epitaxy of InP and GaAs , 1984 .

[83]  S. Namba,et al.  Stepwise monolayer growth of GaAs by switched laser metalorganic vapor phase epitaxy , 1986 .

[84]  Base doping effects in InGaAs/InP double heterostructure bipolar transistors , 1986, 1986 International Electron Devices Meeting.

[85]  J. Cunningham,et al.  Gallium- and arsenic-induced oscillations of intensity of reflection high-energy electron diffraction in the growth of (001) GaAs by chemical beam epitaxy , 1987 .

[86]  W. Tsang,et al.  Chemical beam epitaxial growth of high‐purity GaAs using triethylgallium and arsine , 1987 .

[87]  W. Tsang,et al.  1.3‐μm wavelength GaInAsP/InP double heterostructure lasers grown by molecular beam epitaxy , 1982 .

[88]  D. Miller,et al.  Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures , 1984 .

[89]  J. Campbell,et al.  InGaAs/InP p‐i‐n photodiodes grown by chemical beam epitaxy , 1986 .

[90]  R. M. Lum,et al.  An integrated laboratory-reactor MOCVD safety system , 1986 .

[91]  John E. Bowers,et al.  InP/InGaAsP/InGaAs avalanche photodiodes with 70 GHz gain‐bandwidth product , 1987 .

[92]  High-transconductance heterostructure Ga/sub 0.47/In/sub 0.53/As/InP metal-insulator-semiconductor field-effect transistors grown by chemical beam epitaxy , 1988, IEEE Electron Device Letters.

[93]  M. Lamont,et al.  Use of tertiarybutylarsine in the metalorganic chemical vapor deposition growth of GaAs , 1987 .

[94]  B. Joyce,et al.  Dynamic RHEED observations of the MBE growth of GaAs , 1984 .

[95]  Henryk Temkin,et al.  High gain InGaAs/InP heterostructure bipolar transistors grown by gas source molecular beam epitaxy , 1986 .

[96]  A. Springthorpe,et al.  Metalorganic chemical-vapour-deposition growth and characterization of GaAs , 1985 .

[97]  Haila Wang,et al.  High current gain heterojunction bipolar phototransistor for monolithic integrated photoreceiver , 1987 .

[98]  W. Tsang,et al.  Doping studies using thermal beams in chemical‐beam epitaxy , 1986 .

[99]  G. B. Stringfellow Chapter 3 Organometallic Vapor-Phase Epitaxial Growth of III–V Semiconductors , 1985 .

[100]  S. G. Napholtz,et al.  1.5‐μm GaInAsP planar buried heterostructure lasers grown using chemical‐beam‐epitaxial base structures , 1988 .

[101]  K. Hirose,et al.  High Mobility GaInAs Thin Layers Grown by Molecular Beam Epitaxy , 1985 .

[102]  W. Tsang Ga 0.47 In 0.53 As/InP double-heterostructure and multiquantum well lasers grown by chemical beam epitaxy , 1987 .

[103]  S. J. Bass,et al.  High quality epitaxial indium phosphide and indium alloys grown using trimethylindium and phosphine in an atmospheric pressure reactor , 1984 .

[104]  David A. B. Miller,et al.  Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures , 1986 .

[105]  C. B. Cooper,et al.  Improved mobility in OM-VPE-grown Ga1-xInxAs , 1981 .

[106]  J. Riou,et al.  Diffused epitaxial GaAlAs‐GaAs heterojunction bipolar transistor for high‐frequency operation , 1982 .

[107]  P. J. Corvini,et al.  Spectral dependence of propagation loss in InP/InGaAsP antiresonant reflecting optical waveguides grown by chemical beam epitaxy , 1987 .

[108]  G. B. Stringfellow,et al.  Atomic steps at GaInAs/InP interfaces grown by organometallic vapor phase epitaxy , 1988 .

[109]  J. R. Arthur,et al.  Molecular beam epitaxy , 1975 .

[110]  Karl Woodbridge,et al.  RHEED Studies of Heterojunction and Quantum Well Formation during MBE Growth - from Multiple Scattering to Band Offsets , 1985 .

[111]  P. Pukite,et al.  The dependence of RHEED oscillations on MBE growth parameters , 1985 .

[112]  M. Panish,et al.  Gas source molecular beam epitaxy of GaxIn1−xPyAs1−y , 1984 .

[113]  D. Miller,et al.  Room‐temperature excitons in 1.6‐μm band‐gap GaInAs/AlInAs quantum wells , 1985 .