A two-grid method based on Newton iteration for the Navier-Stokes equations

In this paper, we consider a two-grid method for resolving the nonlinearity in finite element approximations of the equilibrium Navier-Stokes equations. We prove the convergence rate of the approximation obtained by this method. The two-grid method involves solving one small, nonlinear coarse mesh system and two linear problems on the fine mesh which have the same stiffness matrix with only different right-hand side. The algorithm we study produces an approximate solution with the optimal asymptotic in h and accuracy for any Reynolds number. Numerical example is given to show the convergence of the method.