Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity

[1]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[2]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[4]  Serge Charpak,et al.  Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters , 1990, Nature.

[5]  T. H. Bullock,et al.  Coherence of compound field potentials reveals discontinuities in the CA1-subiculum of the hippocampus in freely-moving rats , 1990, Neuroscience.

[6]  P König,et al.  Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Wong,et al.  Excitatory synaptic responses mediated by GABAA receptors in the hippocampus , 1991, Science.

[8]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[9]  P. Schwindt,et al.  Metabotropic glutamate receptor-mediated suppression of L-type calcium current in acutely isolated neocortical neurons. , 1992, Journal of neurophysiology.

[10]  J Midtgaard,et al.  Stellate cell inhibition of Purkinje cells in the turtle cerebellum in vitro. , 1992, The Journal of physiology.

[11]  W. N. Ross,et al.  Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels , 1992, Neuron.

[12]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[14]  J. Rinzel,et al.  Spindle rhythmicity in the reticularis thalami nucleus: Synchronization among mutually inhibitory neurons , 1993, Neuroscience.

[15]  M. Deschenes,et al.  Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. , 1993, Journal of neurophysiology.

[16]  T. H. Brown,et al.  Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. , 1994, Journal of neurobiology.

[17]  R. Llinás,et al.  Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[19]  R. Eckhorn,et al.  Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. , 1994, Neuroreport.

[20]  R. Traub,et al.  A branching dendritic model of a rodent CA3 pyramidal neurone. , 1994, The Journal of physiology.

[21]  M. Bear,et al.  Synaptic plasticity: LTP and LTD , 1994, Current Opinion in Neurobiology.

[22]  D. Debanne,et al.  Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[24]  N. Spruston,et al.  Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. , 1995, The Journal of physiology.

[25]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.

[26]  W. N. Ross,et al.  Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. , 1995, Journal of neurophysiology.

[27]  I. Módy,et al.  Tonic inhibition originates from synapses close to the soma , 1995, Neuron.

[28]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[29]  Ca(2+)-dependent plasticity of miniature inhibitory postsynaptic currents after amputation of dendrites in central neurons. , 1995, Journal of neurophysiology.

[30]  D. Johnston,et al.  Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. , 1995, Journal of neurophysiology.

[31]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  A. Konnerth,et al.  Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons , 1995, Nature.

[33]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[34]  D. Johnston,et al.  Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. , 1995, Journal of neurophysiology.

[35]  U. Gerber,et al.  Activation of a nonselective cationic conductance by metabotropic glutamatergic and muscarinic agonists in CA3 pyramidal neurons of the rat hippocampus , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[37]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[39]  W. Denk,et al.  Two types of calcium response limited to single spines in cerebellar Purkinje cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[41]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[42]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[43]  G. Buzsáki,et al.  Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[45]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[46]  Idan Segev,et al.  Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[49]  Cornelius Borck,et al.  On the Structure of Ictal Events in Vitro , 1996, Epilepsia.

[50]  S. Donevan,et al.  Direct activation of GABAA receptors by barbiturates in cultured rat hippocampal neurons. , 1996, The Journal of physiology.

[51]  T. Kosaka,et al.  Dense GABAergic input on somata of parvalbumin-immunoreactive GABAergic neurons in the hippocampus of the mouse , 1996, Neuroscience Research.

[52]  R. Traub,et al.  Neuronal networks for induced ‘40 Hz’ rhythms , 1996, Trends in Neurosciences.

[53]  R. Malinow,et al.  Deficiency in induction but not expression of LTP in hippocampal slices from young rats. , 1996, Learning & memory.

[54]  R. Traub,et al.  Effects of intravenous anaesthetic agents on fast inhibitory oscillations in the rat hippocampus in vitro , 1996, British journal of pharmacology.

[55]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[56]  D. Johnston,et al.  Axonal Action-Potential Initiation and Na+ Channel Densities in the Soma and Axon Initial Segment of Subicular Pyramidal Neurons , 1996, The Journal of Neuroscience.

[57]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[58]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[59]  P. Somogyi,et al.  Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro , 1996, Hippocampus.

[60]  Stuart Cobb,et al.  Erratum: Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus (Neuroscience (1997) 79 (624-648)) , 1997 .

[61]  P. Somogyi,et al.  Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus , 1997, Neuroscience.

[62]  R. Traub,et al.  Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[63]  N. Spruston,et al.  Prolonged Sodium Channel Inactivation Contributes to Dendritic Action Potential Attenuation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[64]  I Khalilov,et al.  Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. , 1997, The Journal of physiology.

[65]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[66]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[67]  R. Traub,et al.  Spatiotemporal patterns of γ frequency oscillations tetanically induced in the rat hippocampal slice , 1997 .

[68]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[69]  A Konnerth,et al.  Activity-dependent wiring of the developing hippocampal neuronal circuit. , 1997, Seminars in cell & developmental biology.

[70]  I. Soltesz,et al.  Slow Kinetics of Miniature IPSCs during Early Postnatal Development in Granule Cells of the Dentate Gyrus , 1997, The Journal of Neuroscience.

[71]  Xavier Leinekugel,et al.  Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus , 1997, Neuron.

[72]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[73]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[74]  O. Garaschuk,et al.  Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus , 1998, The Journal of physiology.