Radiative transport limit for the random Schrödinger equation
暂无分享,去创建一个
[1] Guillaume Bal,et al. Radiative Transport in a Periodic Structure , 1999 .
[2] F. Bailly,et al. Parabolic and Gaussian White Noise Approximation for Wave Propagation in Random Media , 1996, SIAM J. Appl. Math..
[3] George Papanicolaou,et al. A functional limit theorem for waves reflected by a random medium , 1994 .
[4] Björn Engquist,et al. Parabolic wave equation approxi-mations in heterogeneous media , 1988 .
[5] ScienceDirect. Comptes rendus de l'Académie des sciences. Série I, Mathématique , 2001 .
[6] H. Yau,et al. Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation , 1999 .
[7] Guillaume Bal,et al. Time reversal for classical waves in random media , 2001 .
[8] Herbert Spohn,et al. Derivation of the transport equation for electrons moving through random impurities , 1977 .
[9] P. Markowich,et al. Homogenization limits and Wigner transforms , 1997 .
[10] G. Papanicolaou,et al. Stability and Control of Stochastic Systems with Wide-band Noise Disturbances. I , 1978 .
[11] George Papanicolaou,et al. A limit theorem with strong mixing in banach space and two applications to stochastic differential equations , 1973 .
[12] G. Rybicki. Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.
[13] L. J. Landau,et al. ON THE WEAK COUPLING LIMIT FOR A FERMI GAS IN A RANDOM POTENTIAL , 1993 .
[14] Xiao Ping Wang,et al. Transport equations for a general class of evolution equations with random perturbations , 1999 .
[15] Jean-Pierre Fouque,et al. La convergence en loi pour les processus à valeurs dans un espace nucléaire , 1984 .
[16] Alexis Vasseur,et al. Classical and quantum transport in random media , 2003 .
[17] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[18] I. Mitoma. On the sample continuity of $J'$-processes , 1983 .
[19] George Papanicolaou,et al. Transport equations for elastic and other waves in random media , 1996 .
[20] George Papanicolaou,et al. Forward and Markov approximation: the strong-intensity-fluctuations regime revisited , 1998 .
[21] Donald A. Dawson,et al. A random wave process , 1984 .
[22] Hongkai Zhao,et al. Super-resolution in time-reversal acoustics. , 2002, The Journal of the Acoustical Society of America.