Radiative transport limit for the random Schrödinger equation

We give a detailed mathematical analysis of the radiative transport limit for the average phase space density of solutions of the Schrodinger equation with time-dependent random potential. Our derivation is based on the construction of an approximate martingale for the random Wigner distribution.

[1]  Guillaume Bal,et al.  Radiative Transport in a Periodic Structure , 1999 .

[2]  F. Bailly,et al.  Parabolic and Gaussian White Noise Approximation for Wave Propagation in Random Media , 1996, SIAM J. Appl. Math..

[3]  George Papanicolaou,et al.  A functional limit theorem for waves reflected by a random medium , 1994 .

[4]  Björn Engquist,et al.  Parabolic wave equation approxi-mations in heterogeneous media , 1988 .

[5]  ScienceDirect Comptes rendus de l'Académie des sciences. Série I, Mathématique , 2001 .

[6]  H. Yau,et al.  Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation , 1999 .

[7]  Guillaume Bal,et al.  Time reversal for classical waves in random media , 2001 .

[8]  Herbert Spohn,et al.  Derivation of the transport equation for electrons moving through random impurities , 1977 .

[9]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[10]  G. Papanicolaou,et al.  Stability and Control of Stochastic Systems with Wide-band Noise Disturbances. I , 1978 .

[11]  George Papanicolaou,et al.  A limit theorem with strong mixing in banach space and two applications to stochastic differential equations , 1973 .

[12]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[13]  L. J. Landau,et al.  ON THE WEAK COUPLING LIMIT FOR A FERMI GAS IN A RANDOM POTENTIAL , 1993 .

[14]  Xiao Ping Wang,et al.  Transport equations for a general class of evolution equations with random perturbations , 1999 .

[15]  Jean-Pierre Fouque,et al.  La convergence en loi pour les processus à valeurs dans un espace nucléaire , 1984 .

[16]  Alexis Vasseur,et al.  Classical and quantum transport in random media , 2003 .

[17]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[18]  I. Mitoma On the sample continuity of $J'$-processes , 1983 .

[19]  George Papanicolaou,et al.  Transport equations for elastic and other waves in random media , 1996 .

[20]  George Papanicolaou,et al.  Forward and Markov approximation: the strong-intensity-fluctuations regime revisited , 1998 .

[21]  Donald A. Dawson,et al.  A random wave process , 1984 .

[22]  Hongkai Zhao,et al.  Super-resolution in time-reversal acoustics. , 2002, The Journal of the Acoustical Society of America.