Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric

[1]  Bin Chen,et al.  Topographic and morphologic analyses of retinal ganglion cell loss in old DBA/2NNia mice. , 2006, Investigative ophthalmology & visual science.

[2]  R. Masland,et al.  Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice , 2005, The Journal of cell biology.

[3]  Michael G. Anderson,et al.  Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. , 2005, Visual neuroscience.

[4]  Yan Li,et al.  Susceptibility to Neurodegeneration in a Glaucoma Is Modified by Bax Gene Dosage , 2005, PLoS genetics.

[5]  Kyu-Ryong Choi,et al.  Changes in retinal neuronal populations in the DBA/2J mouse , 2005, Cell and Tissue Research.

[6]  R. Ribchester,et al.  The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves , 2005, BMC Neuroscience.

[7]  Robert N Weinreb,et al.  Regional optic nerve damage in experimental mouse glaucoma. , 2004, Investigative ophthalmology & visual science.

[8]  L. Pinto,et al.  Insertion of the βGeo Promoter Trap into the Fem1c Gene of ROSA3 Mice , 2004, Molecular and Cellular Biology.

[9]  P. Khaw,et al.  Interocular asymmetry of visual field defects in primary open angle glaucoma and primary angle-closure glaucoma , 2004, Eye.

[10]  Eberhart Zrenner,et al.  Retinal neurodegeneration in the DBA/2J mouse—a model for ocular hypertension , 2004, Acta Neuropathologica.

[11]  T. Filippopoulos,et al.  Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. , 2003, Investigative ophthalmology & visual science.

[12]  Michael G. Anderson,et al.  By Altering Ocular Immune Privilege, Bone Marrow–derived Cells Pathogenically Contribute to DBA/2J Pigmentary Glaucoma , 2003, The Journal of experimental medicine.

[13]  Young H. Kwon,et al.  Rate and pattern of visual field decline in primary open-angle glaucoma. , 2002, Ophthalmology.

[14]  E. Lütjen-Drecoll,et al.  Morphology of the murine optic nerve. , 2002, Investigative ophthalmology & visual science.

[15]  Carol A. Mason,et al.  Slit1 and Slit2 Cooperate to Prevent Premature Midline Crossing of Retinal Axons in the Mouse Visual System , 2002, Neuron.

[16]  S. Brodie,et al.  Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. , 2001, Investigative ophthalmology & visual science.

[17]  R. Cumming,et al.  Asymmetry in optic disc parameters: the Blue Mountains Eye Study. , 1999, Investigative ophthalmology & visual science.

[18]  Michael G. Anderson,et al.  Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice , 1999, Nature Genetics.

[19]  T H Roderick,et al.  Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. , 1998, Investigative ophthalmology & visual science.

[20]  G. Tomita,et al.  Interocular asymmetry of optic disc size and its relevance to visual field loss in normal-tension glaucoma , 1994, Graefe's Archive for Clinical and Experimental Ophthalmology.

[21]  G. Tomita,et al.  Correlation of asymmetry of visual field loss with optic disc topography in normal-tension glaucoma. , 1994, Archives of ophthalmology.

[22]  Philippe Soriano,et al.  Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. , 1991, Genes & development.

[23]  J. Bancroft,et al.  Theory and Practice of Histological Techniques , 1990 .

[24]  W R Green,et al.  Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. , 1988, Ophthalmology.

[25]  W. Green,et al.  Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. , 1981, Archives of ophthalmology.

[26]  H. Quigley,et al.  Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. , 1980, Investigative ophthalmology & visual science.

[27]  H Goldmann,et al.  Open-angle glaucoma. , 1972, The British journal of ophthalmology.

[28]  Janey L. Wiggs,et al.  Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice , 2002, Nature Genetics.

[29]  H A Quigley,et al.  Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. , 1981, Archives of ophthalmology.