Effect of precipitation on mechanical properties in the β-Ti alloy Ti-24Nb-4Zr-8Sn

[1]  D. Dye,et al.  Micromechanics of twinning in a TWIP steel , 2015 .

[2]  D. Dye,et al.  The effect of grain size on the twin initiation stress in a TWIP steel , 2015 .

[3]  D. Dye,et al.  Superelastic load cycling of Gum Metal , 2015 .

[4]  D. Dye,et al.  Nanoprecipitation in a beta-titanium alloy , 2015 .

[5]  Moon J. Kim,et al.  New intrinsic mechanism on gum-like superelasticity of multifunctional alloys , 2013, Scientific Reports.

[6]  D. Dye,et al.  Lattice strain evolution in a high volume fraction polycrystal nickel superalloy , 2012 .

[7]  D. Dye,et al.  Effect of texture on load partitioning in Ti-6Al-4V , 2012 .

[8]  Jan Ilavsky,et al.  Nika : software for two-dimensional data reduction , 2012 .

[9]  R. Reed,et al.  Lattice strain evolution during creep in single-crystal superalloys , 2012 .

[10]  C. Xie,et al.  Effect of Aging on Superelastic Behaviors of a Metastable β Ti-Mo-based alloy , 2012, Journal of Materials Engineering and Performance.

[11]  D. Yi,et al.  Age-hardening behavior, microstructural evolution and grain growth kinetics of isothermal ω phase of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications , 2011 .

[12]  D. Luo,et al.  Microstructures and mechanical properties of Ti–Mo alloys cold-rolled and heat treated , 2011 .

[13]  Pete R. Jemian,et al.  Glassy Carbon as an Absolute Intensity Calibration Standard for Small-Angle Scattering , 2010 .

[14]  M. Niinomi,et al.  Isothermal Aging Behavior of Beta Titanium-Manganese Alloys , 2009 .

[15]  M. Jackson,et al.  β Phase decomposition in Ti–5Al–5Mo–5V–3Cr , 2009 .

[16]  H. Fraser,et al.  ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy , 2009 .

[17]  M. Jackson,et al.  On the mechanism of superelasticity in Gum metal , 2009 .

[18]  W. Ho Effect of Omega Phase on Mechanical Properties of Ti-Mo Alloys for Biomedical Applications , 2008 .

[19]  M. Preuss,et al.  Evidence of variation in slip mode in a polycrystalline nickel-base superalloy with change in temperature from neutron diffraction strain measurements , 2007 .

[20]  M. Daymond,et al.  Microstrain evolution during creep of a high volume fraction superalloy , 2005 .

[21]  Taketo Sakuma,et al.  Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism , 2003, Science.

[22]  B. Majumdar,et al.  Microstress evolution during in situ loading of a superalloy containing high volume fraction of γ' phase , 2003 .

[23]  C. Ju,et al.  Structure and properties of cast binary Ti-Mo alloys. , 1999, Biomaterials.

[24]  A. Bowen Omega phase embrittlement in aged Ti-15% Mo , 1971 .

[25]  John A Feeney,et al.  STRESS-INDUCED TRANSFORMATIONS IN Ti-Mo ALLOYS , 1970 .

[26]  J. C. Jamieson,et al.  Crystal Structures of Titanium, Zirconium, and Hafnium at High Pressures , 1963, Science.

[27]  Shujun Li,et al.  The effect of oxygen on α″ martensite and superelasticity in Ti–24Nb–4Zr–8Sn , 2011 .

[28]  L. Brinson,et al.  DEFENSE TECHNICAL INFORMATION CENTER , 2001 .

[29]  R. Pethrick,et al.  Modern techniques for polymer characterisation , 1999 .

[30]  J. Breedis,et al.  Omega phase embrittlement in aged Ti-V , 1970 .