Socio-affective Module for Recommender of Competency Learning Objects MSA-RECOACOMP: a Study in Development

This article describes the required parameters for the development of the socio-Affective Module (MSA) of Recommender of learning objects by competencies (RECoaComp)-MSA-RECoaComp. This is intended to recognize the socio -affective aspects in recommending Learning Objects (OAs) skills. The module is being implemented by a multidisciplinary team and is on the prototyping phase. In the first stage were scaled the elements that will support the socioaffective recognition process. Such data will be extracted by MSA-RECoaComp an exisiting environment of distance education and is used at the institution, ROODA more specifically one of its resources, the Affective Map [14], and the Recommender of competency Learning objects (RECoaComp). Thus, this work allows you to understand the functionality of the MSARECOACOMP noting the feasibility of the recommendation regarding the OAs filtering skills considering the socio-affective aspects.

[1]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[2]  Magalí Teresinha Longhi Mapeamento de aspectos afetivos em um ambiente virtual de aprendizagem , 2011 .

[3]  Patricia Alejandra Behar,et al.  RECOMENDANDO OBJETOS DE APRENDIZAGEM BASEADO EM COMPETÊNCIAS EM EAD , 2011 .

[4]  Benedict du Boulay,et al.  Implementation of motivational tactics in tutoring systems , 1995 .

[5]  Patricia Alejandra Behar,et al.  Developing a Learning Objects Recommender System Based on Competences to Education: Experience Report , 2014, WorldCIST.

[6]  Liane Margarida Rockenbach Tarouco,et al.  Reusabilidade de objetos educacionais , 2003 .

[7]  F. Campos O Teste Sociométrico , 1965 .

[8]  Magda Bercht,et al.  Reconhecimento de estados afetivos do aluno em ambientes virtuais de aprendizagem , 2007 .

[9]  Magda Bercht Em direção a agentes pedagógicos com dimensões afetivas , 2001 .

[10]  Gustavo González,et al.  Embedding Emotional Context in Recommender Systems , 2007, 2007 IEEE 23rd International Conference on Data Engineering Workshop.

[11]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[12]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[13]  K. Scherer What are emotions? And how can they be measured? , 2005 .

[14]  JiQiang,et al.  Toward a decision-theoretic framework for affect recognition and user assistance , 2006 .

[15]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[16]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[17]  Don C. Wiley So what do I do with a learning object , 2003 .

[18]  M.A.S.N. Nunes Recommender Systems based on Personality Traits. (Système de Recommendation basé sur Traits de Personnalité) , 2009 .

[19]  Felix B. Tan,et al.  New Perspectives in Information Systems and Technologies, Volume 2 [WorldCIST'14, Madeira Island, Portugal, April 15-18, 2014] , 2014, WorldCIST.