Corpus-based, Statistical Goal Recognition

Goal recognition for dialogue systems needs to be fast, make early predictions, and be portable. We present initial work which shows that using statistical, corpus-based methods to build goal recognizers may be a viable way to meet those needs. Our goal recognizer is trained on data from apian corpus and then used to determine the agent's most likely goal based on that data. The algorithm is linear in the number of goals, and performs very well in terms of accuracy and early prediction. In addition, it is more easily portable to new domains as does not require a hand-crafted plan library.

[1]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[2]  Candace L. Sidner,et al.  Using plan recognition in human-computer collaboration , 1999 .

[3]  P. Hammer,et al.  Discrete Applied Mathematics Volume 37-38 , 1992 .

[4]  MurphyThomas Brendan,et al.  Mixtures of distance-based models for ranking data , 2003 .

[5]  Mathias Bauer Integrating Probabilistic Reasoning into Plan Recognition , 1994, ECAI.

[6]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[7]  Ronald Fagin,et al.  Comparing top k lists , 2003, SODA '03.

[8]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[9]  Donna K. Harman,et al.  The Text REtrieval Conference (TREC) , 1999, NTCIR.

[10]  Thorsten Joachims,et al.  Unbiased Evaluation of Retrieval Quality using Clickthrough Data , 2002 .

[11]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[12]  Sandra Carberry,et al.  Plan Recognition in Natural Language Dialogue , 1990 .

[13]  Eric Horvitz,et al.  Conversation as Action Under Uncertainty , 2000, UAI.

[14]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[15]  Derick Wood,et al.  Right Invariant Metrics and Measures of Presortedness , 1993, Discret. Appl. Math..

[16]  John D. Lafferty,et al.  Cranking: Combining Rankings Using Conditional Probability Models on Permutations , 2002, ICML.

[17]  Sandra Carberry,et al.  Incorporating Default Inferences Into Plan Recognition , 1990, AAAI.

[18]  Oren Etzioni,et al.  Scalable and adaptive goal recognition , 1998 .

[19]  Henry Kautz,et al.  Chapter 2 – A Formal Theory of Plan Recognition and its Implementation , 1991 .

[20]  Marc B. Vilain,et al.  Getting Serious about Parsing Plans : a Grammatical Analysis of Plan Recognition , 1990 .

[21]  Jennifer Chu-Carroll,et al.  Conflict resolution in collaborative planning dialogs , 2000, Int. J. Hum. Comput. Stud..

[22]  Jan Alexandersson Plan recognition in verbmobil , 1995 .

[23]  Martha E. Pollack,et al.  Weighted abduction for plan ascription , 1992, User Modeling and User-Adapted Interaction.

[24]  Ingrid Zukerman,et al.  Bayesian Models for Keyhole Plan Recognition in an Adventure Game , 2004, User Modeling and User-Adapted Interaction.

[25]  Robert P. Goldman,et al.  A New Model of Plan Recognition , 1999, UAI.

[26]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[27]  John D. Lafferty,et al.  Conditional Models on the Ranking Poset , 2002, NIPS.

[28]  J. Marden Analyzing and Modeling Rank Data , 1996 .

[29]  Radford M. Neal Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..

[30]  Jun Hong,et al.  Goal Recognition through Goal Graph Analysis , 2001, J. Artif. Intell. Res..

[31]  F. Krauss Latent Structure Analysis , 1980 .

[32]  M. Fligner,et al.  Distance Based Ranking Models , 1986 .

[33]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[34]  A. Hanks Canada , 2002 .

[35]  D. Critchlow Metric Methods for Analyzing Partially Ranked Data , 1986 .

[36]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[37]  Robert P. Goldman,et al.  A Bayesian Model of Plan Recognition , 1993, Artif. Intell..

[38]  John Eccleston,et al.  Statistics and Computing , 2006 .

[39]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[40]  Thomas Brendan Murphy,et al.  Mixtures of distance-based models for ranking data , 2003, Comput. Stat. Data Anal..

[41]  Eric Horvitz,et al.  A computational architecture for conversation , 1999 .

[42]  R. Lathe Phd by thesis , 1988, Nature.

[43]  ScienceDirect Computational statistics & data analysis , 1983 .

[44]  Michael P. Wellman,et al.  Accounting for Context in Plan Recognition, with Application to Traffic Monitoring , 1995, UAI.

[45]  DIMITRIOS PIERRAKOS,et al.  User Modeling and User-Adapted Interaction , 1994, User Modeling and User-Adapted Interaction.

[46]  Alan F. Blackwell,et al.  Goal recognition through goal graph analysis , 2001 .

[47]  Karen E. Lochbaum,et al.  A Collaborative Planning Model of Intentional Structure , 1998, CL.

[48]  James F. Allen,et al.  An architecture for a generic dialogue shell , 2000, Natural Language Engineering.

[49]  Persi Diaconis,et al.  What do we know about the Metropolis algorithm? , 1995, STOC '95.

[50]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .