Matching Vector Codes

A locally decodable code encodes a message by a codeword, such that even if the codeword is corrupted by noise, each message bit can be recovered with high probability by a randomized decoding procedure that reads only few bits of the codeword. Recently a new class of locally decodable codes, based on families of vectors with restricted dot products has been discovered. We refer to those codes as Matching Vector (MV) codes. In this work we develop a new view of MV codes and uncover certain similarities between them and classical Reed Muller codes. Our view allows us to obtain a deeper insight into the power and limitations of MV codes. We use it to construct codes that can tolerate more errors or are shorter than previously known codes for certain parameter settings. We also show super-linear lower bounds on the codeword length of any MV code.

[1]  Avi Wigderson,et al.  Rank bounds for design matrices with applications to combinatorial geometry and locally correctable codes , 2010, STOC '11.

[2]  Prasad Raghavendra,et al.  A Note on Yekhanin's Locally Decodable Codes , 2007, Electron. Colloquium Comput. Complex..

[3]  Ronald de Wolf,et al.  Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval , 2004, ICALP.

[4]  Amnon Ta-Shma,et al.  Local List Decoding with a Constant Number of Queries , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[5]  Parikshit Gopalan,et al.  A note on Efremenko's Locally Decodable Codes , 2009, Electron. Colloquium Comput. Complex..

[6]  Yuan Zhou Introduction to Coding Theory , 2010 .

[7]  Jirí Sgall,et al.  Bounds on Pairs of Families with Restricted Intersections , 1999, Comb..

[8]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[9]  David P. Woodruff,et al.  A geometric approach to information-theoretic private information retrieval , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[10]  Joan Feigenbaum,et al.  Hiding Instances in Multioracle Queries , 1990, STACS.

[11]  Yuval Ishai,et al.  General constructions for information-theoretic private information retrieval , 2005, J. Comput. Syst. Sci..

[12]  Daniel A. Spielman,et al.  Nearly-linear size holographic proofs , 1994, STOC '94.

[13]  Toshiya Itoh,et al.  Efficient Private Information Retrieval , 1999 .

[14]  David P. Woodruff Corruption and Recovery-Efficient Locally Decodable Codes , 2008, APPROX-RANDOM.

[15]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[16]  Eyal Kushilevitz,et al.  Private information retrieval , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[17]  Richard J. Lipton,et al.  Efficient Checking of Computations , 1990, STACS.

[18]  Tao Feng,et al.  Query-Efficient Locally Decodable Codes of Subexponential Length , 2010, computational complexity.

[19]  G. David Forney,et al.  Generalized minimum distance decoding , 1966, IEEE Trans. Inf. Theory.

[20]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[21]  Andris Ambainis,et al.  On Lower Bounds for the Communication Complexity of Private Information Retrieval ∗ , 2000 .

[22]  Noga Alon,et al.  Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory , 1986, Comb..

[23]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[24]  Yasuhiro Suzuki,et al.  Improved Constructions for Query-Efficient Locally Decodable Codes of Subexponential Length , 2008, IEICE Trans. Inf. Syst..

[25]  Vince Grolmusz,et al.  Constructing set systems with prescribed intersection sizes , 2002, J. Algorithms.

[26]  Sergey Yekhanin,et al.  Locally Decodable Codes From Nice Subsets of Finite Fields and Prime Factors of Mersenne Numbers , 2007, 2008 23rd Annual IEEE Conference on Computational Complexity.

[27]  William Gasarch A Survey on Private Information Retrieval , 2004 .

[28]  David P. Woodruff New Lower Bounds for General Locally Decodable Codes , 2007, Electron. Colloquium Comput. Complex..

[29]  Zeev Dvir,et al.  Matching Vector Codes , 2010, FOCS.

[30]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[31]  E. Kushilevitz,et al.  Barrier for Information-Theoretic Private Information Retrieval , 2002 .

[32]  Ronald de Wolf,et al.  Exponential lower bound for 2-query locally decodable codes via a quantum argument , 2002, STOC '03.

[33]  David A. Mix Barrington,et al.  Representing Boolean functions as polynomials modulo composite numbers , 1992, STOC '92.

[34]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[35]  Leonid A. Levin,et al.  Checking computations in polylogarithmic time , 1991, STOC '91.

[36]  Victor Shoup,et al.  A computational introduction to number theory and algebra , 2005 .

[37]  Madhu Sudan,et al.  Highly Resilient Correctors for Polynomials , 1992, Inf. Process. Lett..

[38]  P. Frankl,et al.  Linear Algebra Methods in Combinatorics I , 1988 .

[39]  Jaikumar Radhakrishnan,et al.  Better lower bounds for locally decodable codes , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[40]  Zeev Dvir,et al.  On Matrix Rigidity and Locally Self-correctable Codes , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.

[41]  Yuval Ishai,et al.  On Locally Decodable Codes, Self-correctable Codes, and t -Private PIR , 2007, APPROX-RANDOM.

[42]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[43]  Amnon Ta-Shma,et al.  A Note on Amplifying the Error-Tolerance of Locally Decodable Codes , 2010, Electron. Colloquium Comput. Complex..

[44]  Anna Gál,et al.  Three-Query Locally Decodable Codes with Higher Correctness Require Exponential Length , 2012, TOCT.

[45]  Sergey Yekhanin,et al.  Locally Decodable Codes and Private Information Retrieval Schemes , 2010, Information Security and Cryptography.

[46]  Richard J. Lipton,et al.  Computing with polynomials over composites , 2006 .

[47]  Shubhangi Saraf,et al.  Noisy Interpolation of Sparse Polynomials, and Applications , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[48]  Kenji Obata,et al.  Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes , 2002, RANDOM.

[49]  Luca Trevisan,et al.  Some Applications of Coding Theory in Computational Complexity , 2004, Electron. Colloquium Comput. Complex..

[50]  Yuval Ishai,et al.  Breaking the O(n/sup 1/(2k-1)/) barrier for information-theoretic Private Information Retrieval , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[51]  Shubhangi Saraf,et al.  High-rate codes with sublinear-time decoding , 2011, STOC '11.

[52]  Luca Trevisan,et al.  Lower bounds for linear locally decodable codes and private information retrieval , 2006, computational complexity.

[53]  Zeev Dvir,et al.  Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits , 2005, STOC '05.

[54]  Vince Grolmusz,et al.  Superpolynomial Size Set-systems with Restricted Intersections mod 6 and Explicit Ramsey Graphs , 2000, Comb..

[55]  Klim Efremenko,et al.  3-Query Locally Decodable Codes of Subexponential Length , 2008 .